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Preface

In the spring semester of 2013, I took a graduate fluid
mechanics class taught by Philip J. Morrison. On the
first homework assignment, I found that it was easier to
solve some of the problems using tensors in the coordinate
basis, but I was uncomfortable with it because I wasn’t
sure if I was allowed to use a formalism that had not been
taught in class. Eventually, I decided that if I wrote
an appendix on tensors, I would be allowed to use the
formalism. Sometime in 2014, I converted1 the appendix
into a set of introductory notes on tensors and posted
it on my academic website, figuring that they might be
useful for someone interested in learning the topic.

Over the past three years, I had become increasingly
dissatisfied with the notes. The biggest issue with these
notes was that they were typeset in Mathematica—
during my early graduate career, I typeset my homework
assignments in Mathematica, and it was easiest to copy
and paste the appendix into another Mathematica note-
book (Mathematica does have a feature to convert note-
books to TeX, but much of the formatting is lost in the
process). I had also become extremely dissatisfied with
the content—the notes contained many formulas that
weren’t sufficiently justified, and there were many exam-
ples of sloppy reasoning throughout. At one point, I had
even considered removing the notes from my website, but
after receiving some positive feedback from students who
benefited from the notes, I decided to leave it up for the
time being, vowing to someday update and rewrite these
notes in TeX. My teaching duties and dissertation work
have delayed my progress—it has been more than two
years since my last update to these notes—but I have
finally found the time to properly update these notes.

These notes have been rewritten; this means that I
have re-typed the notes from beginning to end, revising
and adding to the notes as I went along. What I did not
do was copy and paste text from my old notes and edit

the result—every single word in this document has been
re-typed. I do this to ensure that all of the shortcomings
of the earlier versions (those that I am aware of, at least)
are addressed. All sections have been rewritten and ex-
panded. The overall organization of these notes is the
same as it was in the original, except for the addition of
a section on index gymnastics and a section at the end
which covers surface integrals, the divergence theorem,
and Stokes’ theorem. Exercises have been added to the
end of each section to enhance the reader’s understand-
ing of the material. An index has been added as well.
Though I have added a lot of content, I have attempted
to maintain the succinctness of the original notes, and
resisted the temptation to include a full-blown treatment
of differential forms and Riemannian geometry—I’ll save
those for a separate set of notes.

The title, The Poor Man’s Introduction to Tensors, is a
reference to Gravitation by Misner, Thorne and Wheeler,
which characterizes simplified approaches to a problem
as “the poor man’s way to do X.” Originally, these notes
were intended to be a short, informal primer on tensors,
and were by no means a substitute for a more formal
and complete treatment of the subject. I fear that in
my effort to overcome the shortcomings of the previous
version, these notes have become too formal and detailed
to justify the label “Poor Man’s” in the original sense of
a simplified, informal treatment of the topic. However, I
have tried to rewrite these notes in a manner that is ac-
cessible to anyone with a basic training in linear algebra
and vector analysis, and I promise to always make these
notes freely available on the web—these notes are in this
sense The Poor Man’s Introduction to Tensors.

If you find any errors or have any suggestions for these
notes, feel free to contact me at:
jcfeng@physics.utexas.edu

Have Fun!

Justin C. Feng
Austin, Texas
December 2017

1This involved adding some content, in particular the material on
the Levi-Civita tensor and integration, and the removal of frivolous
content—the original appendix was full of jokes and humorous re-
marks, which I often placed in my homework assignments to enter-
tain myself (and also the grader).
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When solving physical problems, one must often choose between writing formulas in a coordinate
independent form, or a form in which calculations are transparent. Tensors are useful because they
provide a formalism that is both coordinate independent and transparent for performing calculations.
In particular, tensors facilitate the transformation of partial differential equations and the formulas
of vector calculus to their corresponding forms in curvilinear coordinates. In these notes, I provide
an introduction to tensors in Euclidean space for those who are familiar with the basics of linear
algebra and vector calculus.
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I. INTRODUCTION

These notes were written for a broad audience—I wrote
these notes to be accessible to anyone with a basic knowl-
edge of linear algebra and vector calculus.1 I have done
my best to build up the subject from first principles;
the goal of these notes is not to simply teach you the
“mechanics” of the formalism2, but to provide you with
a fundamental understanding of what tensors are. Since
these notes are intended for a broad audience, I will avoid
discussion of General Relativity and non-Euclidean ge-
ometry, and focus instead on developing the formalism
for ordinary three-dimensional Euclidean space. In addi-
tion to providing a fundamental understanding of what
tensors are, these notes are intended to provide you with
the tools to effortlessly write down explicit expressions
for Partial Differential Equations and integrals in a gen-
eral curvilinear coordinate system.3

1For those who are unfamiliar with these topics and those who need
a refresher, I can suggest a few books (and a short symmery).
Linear Algebra: Step by Step by K. Singh covers all Linear algebra
concepts that I assume of the reader. There is also a short 4-page
summary in [25], which summarizes the topics covered in the recent
(crudely-titled) book No Bullshit Guide to Linear Algebra by Ivan
Savov. The book Div, Grad, Curl, and All That by H. M. Schey
[26] provides an excellent informal introduction to vector calculus.
I learned the basics from the book Mathematical Methods in the
Physical Sciences by Mary Boas [4].

2In these notes, the word formalism is defined as a collection of
rules and techniques for manipulating symbols. A good formalism
should provide a systematic way of writing down a complicated
mathematical operation in a much simpler form. One of my goals
in writing these notes is to show you how the formalism of tensors
simplify coordinate transformations for PDEs and integrals.

3Curvilinear coordinates on Euclidean space are defined as coordi-
nate systems in which the coordinate lines are curved.
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II. TENSORS CONDENSED

When learning a new topic, I often find it helpful to
identify the central ideas and principles first—I usually
get more out of the topic when I do so. For your con-
venience, I present to you, in a single paragraph, the
essence of tensor analysis:

Simply put, a tensor is a mathematical con-
struction that “eats” a bunch of vectors, and
“spits out” a scalar. The central principle
of tensor analysis lies in the simple, almost
trivial fact that scalars are unaffected by co-
ordinate transformations. From this trivial
fact, one may obtain the main result of ten-
sor analysis: an equation written in tensor
form is valid in any coordinate system.

In my attempt to summarize tensor analysis in a single
paragraph, I have left out many important details. For
instance, the definition for tensors in the first sentence
is an incomplete one; in particular, it leaves out the fact
that tensors are linear maps, as well as the fact that ten-
sors also “eat” other objects called dual vectors. These
details will be discussed in the remainder of these notes.

III. INDEX NOTATION (INDEX PLACEMENT
IS IMPORTANT!)

If you are already familiar with indices, it may be
tempting to skip this section. However, I emphasize some
important points in this section—at the very least, make
sure to take note of the boldfaced text.

Indices (the plural of index) provide a useful way to
organize a large number of quantities, be they variables,
functions, or abstract elements of sets. They are particu-
larly useful when you have a large collection of equations
that all have a similar form. Before I tell you what an
index is, I’d like to provide a quick motivating example
first to sell you on the formalism. Suppose you encounter
a physical system which is described by 89 different vari-
ables. If you attempt to represent each variable with a
single Latin or Greek letter, you will run out of letters
before you could write down all the variables for the sys-
tem!

An index is written as a superscript or a subscript that
we attach to a symbol; for instance, the subscript letter
i in qi is an index for the symbol q, as is the superscript
letter j in pj is an index for the symbol p. Indices often
represent positive integer values; as an example, for qi,
i can take on the values i = 1, i = 2, i = 3, and so on.
In this way, I can represent all 89 variables by simply
writing down qi, with the understanding that i can have
any integer value from 1 to 89. In particular, qi provides

a simple way to represent the full list of 89 variables:

q1, q2, q3, q4, q5, q6, q7, q8, q9, q10, q11, q12, q13, q14, q15, q16,

q17, q18, q19, q20, q21, q22, q23, q24, q25, q26, q27, q28, q29, q30,

q31, q32, q33, q34, q35, q36, q37, q38, q39, q40, q41, q42, q43, q44,

q45, q46, q47, q48, q49, q50, q51, q52, q53, q54, q55, q56, q57, q58,

q59, q60, q61, q62, q63, q64, q65, q66, q67, q68, q69, q70, q71, q72,

q73, q74, q75, q76, q77, q78, q79, q80, q81, q82, q83, q84, q85, q86,

q87, q88, q89

This is a pain to write out by hand—it’s much easier to
just write qi, with i representing integer values from 1 to
89.

I now consider a more concrete example. Many prob-
lems in physics and engineering are formulated in Carte-
sian coordinates on three-dimensional Euclidean space.
For a three-dimensional Euclidean space, Cartesian co-
ordinates refer to the three variables x, y, and z. Instead
of using three different variables x, y, and z to describe
the coordinates of a point, I can instead write xi, where i
can be any number in the list (1, 2, 3). Explicitly, I write
the following:

x1 = x

x2 = y

x3 = z

(3.1)

A word of caution—The superscripts 1, 2, and 3 are
NOT exponents! The superscripts 1, 2, and 3 are sim-
ply labels telling you which coordinate you are referring
to. To be clear: the “2” in x2 means that x2 represents
coordinate number 2; it DOES NOT mean x · x!

You might be wondering why I choose to represent the
coordinates xi with a superscript, rather than a subscript
(for instance, I could have written xi instead). Though
this is partly a matter of convention, the use of super-
scripts for coordinate indices is widely used. In any case,
I feel that I must emphasize this convention:

In these notes, coordinate indices will
always be superscripts

This may seem to be overly pedantic, but I’m doing this
because I want to emphasize and alert you to the fact
that in tensor analysis, INDEX PLACEMENT IS
IMPORTANT! In case it isn’t clear, Index placement
refers to whether the index is a superscript or a subscript.
I’ll take this opportunity to introduce you to some ter-
minology: a superscript index, like the j in pj , is called
a raised index , and a subscript index, like the i in qi, is
called a lowered index .

Indices may also be used to describe a vector in three-
dimensional Euclidean space. Typically, we write ~v to
represent a vector. In three dimensions, we use three
numbers to describe a vector, so that for a vector ~v in Eu-
clidean space (assuming Cartesian coordinates), ~v repre-
sents the list of three numbers (vx, vy, vz), with vx being



3

the component of the vector in the x-direction, vy being
the component of the vector in the y-direction, and so
on. In index notation, I may write ~v as vi, so that:

v1 = vx

v2 = vy

v3 = vz

(3.2)

The formulas above (3.2) allow me to identify v1 as the
component of the vector in the x1-direction, v2 as the
component of the vector in the x2-direction, and so on.
The expression vi is therefore a compact way express the
components of a vector.

Note that I also use raised indices (superscripts) for
vectors. This is because introductory courses tend to
characterize vectors as the difference between two points,
which in index notation may be written as ∆xi. Since
the index i in ∆xi is raised, vector components defined
in this manner should have raised indices.

Index notation may be extended to vector formulas in
a straightforward manner. Consider the following well-
known formula:

~F = m~a, (3.3)

where ~F and ~a are vectors, and m is some positive num-
ber. To convert this to index form, I replace the arrows
with indices:

F i = mai (3.4)

Equation (3.4) is just a compact way of writing the fol-
lowing three equations:

F 1 = ma1

F 2 = ma2

F 3 = ma3
(3.5)

Index notation may also be used to describe square ma-
trices. Recall that one may write down a square matrix
M in three dimensions as the following table of numbers:

M =

 M11 M12 M13

M21 M22 M23

M31 M32 M33

 (3.6)

It is tempting to write the components of the matrix
as Mij , and this is often done. I will do this for now,
but don’t get too comfortable with it—I will change my
conventions in just a bit. In index notation, I may write
the Eigenvector formula M~v = λ~v as:

3∑
j=1

Mij v
j = λ vi (3.7)

For me, it is uncomfortable to deliberately write this for-
mula down—the feeling is kind of like hearing the sound
of fingernails scraping a chalkboard. This is due to a

mismatch in the placement of indices. Notice that on
the right hand side of (3.7), the index i is raised, but
on the left hand side, the index i is lowered. When a
matrix acts on a vector, the result must also be a vec-
tor, but according to my earlier convention, vectors must
have raised indices. If the left hand side of (3.7) form the
components of a vector, the index i must also be raised.

If I insist that vector indices must be raised, then the
“proper” way to express the components of a matrix is
M i

j , so that the Eigenvector formula (3.7) becomes:

3∑
j=1

M i
j v

j = λ vi (3.8)

At first, this may seem rather awkward to write, since it
suggests that the individual matrix elements be written
as M1

1, M1
2, ... etc. However, I assure you that as you

become more comfortable with tensor analysis, equation
(3.8) will seem less awkward to write than (3.7).

While I’m on the topic of matrices, I’d like to introduce
the Kronecker delta δij , which is just the components of

the identity matrix. Specifically, δij is defined in the fol-
lowing way:

δij =

{
1 if {i = j}
0 if {i 6= j}

⇒

δij =

 δ11 δ12 δ13
δ21 δ22 δ23
δ31 δ32 δ33

 =

 1 0 0
0 1 0
0 0 1

 (3.9)

The quantities δij and δij are similarly defined, and are
also referred to as Kronecker deltas. To drive home
the point that INDEX PLACEMENT IS IMPOR-
TANT, it turns out that δij form the components of a

tensor, but δij and δij do not—after I present the defi-
nition for a tensor, I will give you an exercise (exercise
IX.3) where you show this.

I hope I am not frustrating you with my obsession
about index placement. The whole point of this is to
alert you to the importance of index placement in tensor
analysis. I’ll write it again: INDEX PLACEMENT
IS IMPORTANT! My shouting is especially directed
to those who have been exposed to Cartesian tensors1.
Since I have emphasized this point repeatedly, it is ap-
propriate for me to give you some idea of why index place-
ment is important. The placement of the index is used

1Many treatments of tensor analysis begin by studying Cartesian
tensors (tensors expressed exclusively in Cartesian coordinates),
and when doing so, the distinction between raised and lowered in-
dices is often ignored. One example is the treatment of tensors in
[4], which I used as an undergraduate, and also [15]. I understand
that the intent in taking this approach is to provide a gentler in-
troduction to tensors, but I feel that this approach obscures the
essence of tensors, and can lead to a great deal of confusion when
moving on to curvilinear coordinates.
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to distinguish two types of objects:1 vectors vi and dual
vectors wi. This distinction will be critically important
in upcoming sections and we will not be able to proceed
without it.

Exercise III.1
In your own hand, write down the following
sentence three times on a sheet of paper:

INDEX PLACEMENT IS IMPOR-
TANT!

Exercise III.2
Let M, P, and Q be n×n matrices, with the
respective components M i

j , P
i
k, and Qkj (I

choose the letters for the indices on the com-
ponents to help you out). Rewrite the for-
mula M = PQ (which involves matrix mul-
tiplication) using index notation. Your result
should contain a sum over the values of one
index.

IV. EINSTEIN SUMMATION CONVENTION

I’ve been told on more than one occasion that Albert
Einstein’s greatest contribution to physics and mathe-
matics2 is his invention of the Einstein summation con-
vention, which is the following rule:

Any time you see a pair of indices (one
raised and one lowered) written with
the same symbol, a sum is implied.

For instance, given the matrix components M i
j and vec-

tor components vi, Einstein summation convention states
that when you see an expression of the form M i

j v
j , there

is a sum over the index j, since the letter j appears
twice. More explicitly, Einstein summation convention
states that the following expression:

M i
j v

j (4.1)

is equivalent to the explicit sum3:∑
j

M i
j v

j (4.2)

1I’ll take this opportunity to introduce some terminology, which
I will repeat later on. Vectors vi are often called contravariant
vectors, and dual vectors wi are called covariant vectors.

2I’ve also been told that Einstein himself made a remark to this
effect.

3To be clear, summation convention DOES NOT apply to formula
(4.2); by including the summation symbol

∑
j , I have made the

summation explicit.

I state this again: Einstein summation convention states
that when I write down the expression M i

j v
j , I should

automatically assume that there is a sum over any index
that appears twice (again, one must be raised and the
other lowered).

Einstein invented this convention after noting that the
sums which appear in calculations involving matrix and
vector products always occur over pairs of indices. At
first, Einstein summation convention seems like a poten-
tially dangerous thing to do; if you think about it, we’re
basically taking a sum like the one in equation (4.2) and
erasing the summation symbol

∑
j . You might imag-

ine that erasing summation symbols
∑
j will produce a

bunch of ambiguities in the formalism. However, Ein-
stein summation convention works (in the sense that it is
unambiguous) because when performing a tensor calcula-
tion, the indices you sum over always come in a pair—one
raised and one lowered. If you encounter more than two
repeated indices or a pair of indices that are both raised or
both lowered, you have either written down a nonsensical
expression, or you have made a mistake.

Summation convention does have one limitation. If you
want to refer to a single term in the sum, but you don’t
want to specify which one, you have to state that there
is no sum implied. One way to get around this (though
it is not standard4) is to underline the index pairs that
you do not sum over, for instance: M i

a v
a.

Exercise IV.1

If you did Exercise III.2 properly, you would
have noticed that your sum is consistent with
Einstein’s observation: the symbol for the in-
dices that you sum over should appear twice
in your expression, with one of the indices
raised and the other lowered. If your result
is not consistent, fix this. Write out the ma-
trix multiplication MPQ in index notation
using explicit sums (again, assume that M,
P, and Q are n × n matrices). This time,
you should get two sums, and—if you do this
correctly—you will find that Einstein’s obser-
vation5 holds in this case as well.

4What is usually done is to explicitly state that there is no sum (see,
for instance, page 9 of [17]).

5Namely, the observation that sums in matrix and vector products
occur over pairs of indices.
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V. VECTORS

Before I provide the definition of a tensor, I must first
provide a definition for a vector; in fact, you will later
see that a vector is in fact an example of a tensor.

A vector is simply a directional derivative. Before you
write me off as a nut, examine the directional derivative
for some function f(xa):

~v · ~∇f(xa) = vi
∂f

∂xi
(5.1)

where xa represent Cartesian coordinates on Euclidean
space.1 I use Einstein summation convention in equa-
tion (5.1)—in Einstein summation convention, the
index i for partial derivatives ∂

∂xi is treated as if
it were a lowered index. Now I remove the function
from equation (5.1) to obtain the directional derivative
operator:

~v·~∇ = vi
∂

∂xi
⇔ ~v·~∇ = v1

∂

∂x1
+v2

∂

∂x2
+v3

∂

∂x3
(5.2)

Now compare this with the vector ~v written out in terms
of the orthogonal unit vectors êa (if you are more familiar

with the unit vectors î, ĵ, and k̂, then you can imagine

that ê1 = î, ê2 = ĵ, and ê3 = k̂):

~v = vi êi ⇔ ~v = v1 ê1 + v2 ê2 + v3 ê3 (5.3)

Side-by-side, equations (5.2) and (5.3) suggest that par-
tial derivatives ∂/∂xi can be thought of as basis
vectors! This is essentially what I’m claiming when I say
that a vector is simply a directional derivative. The basis
of partial derivatives, by the way, is called the coordinate
basis.

Of course, in order for me to say that a vector is a
directional derivative operator, I must show that the di-
rectional derivative operator contains the same
information as the information contained in the
explicit components (v1, v2, v3). I can do one better—
I can show you how to extract the components (v1, v2, v3)

from the directional derivative operator ~v · ~∇. Let’s see
what happens when I feed the trivial function f = x3

into the directional derivative operator (here, the “3” in
x3 is an index, NOT an exponent!):

~v · ~∇x3 = vi
∂x3

∂xi
= v1

∂x3

∂x1
+ v2

∂x3

∂x2
+ v3

∂x3

∂x3
(5.4)

Coordinates are independent of each other, so ∂xi

∂xj = 0 if

i 6= j and ∂xi

∂xj = 1 if i = j. A compact way of writing

1Often, indices are suppressed in the arguments of a function: it is
typical to write f(x) rather than f(xa). However, there are some
situations in which it is convenient to use the same symbol for two
(or more) different quantities, with the distinction provided by the
number of indices—for instance, one might write pi for a vector
and pij for a matrix.

this is:

∂xi

∂xj
= δij (5.5)

where δij is the Kronecker delta defined in (3.9). Equation
(5.4) is then:

~v · ~∇x3 = vi δ3i = v3 (5.6)

This result (equation (5.6)) means that all I have to do
to pick out a component vi of a vector is to feed the cor-
responding coordinate xi into the directional derivative
operator. In fact, you can even define the components vi

of the vector ~v this way:

vi := ~v · ~∇xi (5.7)

The whole point of this discussion is to motivate (in an
operational sense) the definition of a vector as the follow-
ing operator:

v(·) := ~v · ~∇(·) = vi
∂

∂xi
(·) ⇒ v = vi

∂

∂xi
(5.8)

I drop2 the arrow on the vector v to indicate that it is an
operator now (with (·) being the place where you insert
a function). Given the definition (5.8), the components
(5.7) may be rewritten as:3

vi := v(xi) (5.9)

where the right-hand side is to be interpreted as the (di-
rectional derivative) operator v(·) in (5.8) acting on the
coordinate xi.

To give you some intuition for the definition (5.8), I’ll
relate it to an example that may be more familiar to you.
Consider a curve in Euclidean space. I may parameter-
ize the curve by the functions xi(t); in particular, I write
the coordinates of points that lie along the curve as func-
tions of a parameter t. The notation here is meant to be
suggestive; you might imagine that xi(t) describes the
motion of a particle with respect to time. If I take the
derivative of xi(t) with respect to t, I obtain a vector vi

that is tangent to the curve xi(t) (the tangent vector to
the curve):

vi =
dxi

dt
(5.10)

Note that this is a local expression; it can be evaluated at
a single point in space. To see how this relates to the di-
rectional derivative definition (5.8) for a vector, consider

2Another reason for doing this is to get you comfortable with nota-
tion that is commonly used in the literature.

3Vectors that have components vi with raised indices are sometimes
called contravariant vectors.
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a function1 φ(xa(t)). Using the chain rule, the derivative
of φ(xa(t)) with respect to t is:

dφ(xa(t))

dt
=
dxi

dt

∂φ

∂xi
⇒ dφ

dt
= vi

∂φ

∂xi
(5.11)

You might recognize the expression on the right-hand
side of (5.11) as the directional derivative operator acting
on φ. If vi is the tangent vector to a curve parameterized
by t, then the directional derivative operator is another
way of writing derivatives with respect to t.

Before I move on, I must mention an assumption that I
will make for the remainder of these notes. I will always
assume that vi is a function of the coordinates xa.
In particular, whenever I talk about vectors (dual vectors
and tensors too, for that matter), I am actually referring
to vector fields, which is a construction that assigns a
vector to each point in space.2

Manifolds and Tangent Spaces
I have a few remarks for those interested in the applications of

this formalism beyond that of Euclidean space, since the formalism
here is designed to be flexible enough to describe spaces which have
non-Euclidean geometries, such as curved surfaces. A generaliza-
tion of Euclidean space that is often used is that of a manifold ,
denoted M, which can be thought of as a set that has the (topo-
logical) properties of Euclidean space near a point (we say that
manifolds are locally Euclidean). A differentiable manifold is a
manifold that has all the properties needed to do calculus on it.

The intuition behind manifolds and differentiable manifolds is
that if you look very closely at a point p on a curved 2d surface (like
a globe), the immediate area surrounding p (called the neighborhood
of p) looks like a small piece of a flat 2d plane (which is a 2d
Euclidean space). In fact, I can imagine attaching a 2d plane to a
curved 2d surface, so that in the neighborhood of p, it only touches
the curved 2d surface at the point p; we say that the plane is tangent
to the surface. It turns out that if you draw a path/curve on the
curved 2d surface that passes through p, all the tangent vectors to
that path at p will lie along (or are parallel to) a plane tangent to
the surface. In other words, given a point p on a curved surface, all
of the tangent vectors I can possibly construct from curves passing
through p will lie along the same plane (called the tangent plane).

The example in the previous section motivates the concept of
a tangent space of a manifold at point p (often denoted TpM),
which is defined as the set of all directional derivative operators
(5.8) evaluated at p, which I write as vp(·) = v(·)|p. In particular,
these are operators that act on functions f in the following way:

vp(f) = v(f)|p = vi
∂f

∂xi

∣∣∣∣
p

. (5.12)

You can find a discussion of manifolds and their mathematical un-

derpinnings in [2], [27], [20], [11], and [19]. Some General Relativity

1If it helps, you could imagine that φ is the potential energy for
a particle, with a corresponding force ~F = ~∇φ. If xa(t) is the
trajectory of the particle, then (5.11) computes the power P =

dW/dt (W being work) applied to the particle by the force ~F :

P = ~F · ~v.
2When working with tensors, you need to get rid of the idea that
a single vector can be defined everywhere in space, if you haven’t
already. This idea only makes sense in Euclidean space, and it is
only useful in Cartesian coordinates. Though these notes will focus
on curvilinear coordinates in Euclidean space, the study of non-
Euclidean spaces is the main motivation for doing tensor analysis,
particularly in General Relativity.

textbooks, such as [31] and [5], will also introduce and discuss the

concept of a manifold.

Exercise V.1

In this section, I used Einstein summation
convention throughout. Identify all the equa-
tions in this section that use Einstein summa-
tion convention, and re-insert the summation
symbols Σi.

Exercise V.2

In linear algebra, a vector is defined as an
element of a vector space. Show that the di-
rectional derivative operator (5.8) is indeed
an element of a vector space.

Exercise V.3

You can describe a circle of radius R in Eu-
clidean space as a curve xi(θ) parameterized
by the parameter θ, with the coordinates
xi(θ) explicitly given by the following formu-
las:

x1(θ) = R cos(θ)

x2(θ) = R sin(θ)

x3(θ) = 0

Use these formulas to obtain the components

of the tangent vector vi(θ) = dxi

dθ . Draw a
circle (use a compass!) on a sheet of graph
paper, and draw arrows representing the vec-
tor vi for various values of θ, with the tail
ending at the point of the circle correspond-
ing to each value of θ. In doing so, convince
yourself that vi is indeed a vector tangent to
the circle.
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VI. THE METRIC GENERALIZES THE DOT
PRODUCT

You should be familiar with the dot product u·v for two
vectors u and v. Note that I have again dropped the ar-
row notation for vectors; for the remainder of these notes,
the symbols u and v will be used exclusively for vectors.
In index notation, the dot product can be written as (as-
suming Cartesian coordinates on Euclidean space):

u · v = δij u
i vj (6.1)

where δij is the Kronecker delta with lower indices (δij =
1 for i = j and δij = 0 for i 6= j).

The dot product is an example of an inner product1

for vectors 〈u, v〉, which is a generalization of the dot
product. The inner product may be written in terms of
a quantity gij called the metric:

〈u, v〉 = gij u
i vj (6.2)

Since inner products are symmetric 〈u, v〉 = 〈v, u〉, the
metric has the following symmetry:

gij = gji (6.3)

We require the existence of an inverse metric2 gij , de-
fined as the solution to the following equation:

gik gkj = δij (6.4)

Recall that the Kronecker delta δij , defined in equation
(3.9), is just the components of the identity matrix; this
justifies the term “inverse metric” for gij .

For dot products in Cartesian coordinates on Eu-
clidean space (〈u, v〉 = u · v), we see that the metric is
gij = δij . Explicitly, the metric may be written as the
following table (the metric is not exactly a matrix, since
both indices are lowered):

gij =

 g11 g12 g13
g21 g22 g23
g31 g32 g33

 =

 1 0 0
0 1 0
0 0 1

 (6.5)

1In relativity, we often use a definition for inner products that may
be slightly different from those used in your linear algebra classes
(see definition 4.1 in [29])). In particular, we define an inner prod-
uct by the following four properties for vectors p, u, v and scalar α:

1. 〈u+ p, v〉 = 〈u, v〉+ 〈p, v〉
2. 〈αu, v〉 = α〈u, v〉
3. 〈u, v〉 = 〈v, u〉
4. Nondegeneracy: There exists no nonzero vector u such that
〈u, v〉 = 0 holds for all vectors v
The difference is in property 4; in linear algebra classes, the
positive-definite condition (〈v, v〉 ≥ 0 for all v) is often used in
place of property 4. In special relativity, we use property 4 be-
cause special relativity requires a notion of inner product for which
〈v, v〉 can have any value for nonzero vectors v.

2Confusingly, some authors refer to both gij and gij as the “met-
ric.” You can get away with this, since the index placement in gij

is used to indicate that it is the inverse of gij , and gij and gij

can be thought of as two different ways of writing down the same
information (since in principle, you can get one from the other).

It should not be too hard to infer (see exercise VI.1
below) that the components of the inverse metric are
gij = δij .

I’ll take a moment to explain meaning of the metric
components gij . Recall that a three-dimensional vector
may be written in terms of three linearly independent
basis vectors ei in the following way:

v = vi ei (6.6)

Here, I do not assume that ei are orthogonal unit vectors;
they may not be of unit length and they may not be
orthogonal to each other. Since ei are themselves vectors,
I can take inner products of the basis vectors: 〈ei, ej〉.
Using the properties3 of inner products, you can show
(see exercise VI.2) that 〈ei, ej〉 form the components of
the metric tensor:

gij = 〈ei, ej〉 (6.7)

Thus, the metric components gij are just inner prod-
ucts between basis vectors. In the previous section, I
introduced the idea that partial derivatives ∂

∂xi are basis
vectors. Equation (6.7) in turn suggests that the metric
components gij define inner products for partial deriva-
tives:

gij =

〈
∂

∂xi
,
∂

∂xj

〉
(6.8)

In the literature, you may encounter statements to the
effect that the metric provides a way to measure dis-
tances in space. This is because the metric can be used
to construct the line element :

ds2 = gij dx
i dxj (6.9)

which can be thought of as the norm 〈dx, dx〉 of an in-
finitesimal displacement vector dxi. In the usual x-y-z
variables for Cartesian coordinates, line element may also
be written as (the superscript 2 in (6.10) is an exponent,
not an index):

ds2 = dx2 + dy2 + dz2 (6.10)

Given a curve xi(s) parameterized by a parameter t, the
line element can be used to measure distances along the
curve. The line element (6.9) can be thought of as the
square of the infinitesimal distance ds along the curve,
and the distance ∆s between any two points xi1 = xi(t1)
and xi2 = xi(t2) is given by the following integral:

∆s =

∫ t2

t1

√
gij

dxi

dt

dxj

dt
dt (6.11)

3See footnote 1.
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You can derive (6.11) from (6.9) by taking the square root
of (6.9) to get a formula for ds, and using the physicist’s
trick of multiplying and dividing by differentials:

ds =
√
gij dxi dxj =

√
gij dxi dxj

dt

dt
=

√
gij

dxi

dt

dxj

dt
dt

(6.12)
One can then integrate equation (6.12) to obtain (6.11).

I must make one last remark before concluding the
present discussion. The metric/inner product can
be thought of as a (linear1) “machine” that “eats”
two vectors and “spits out” a scalar. We will later
see that tensors can be defined by a similar characteriza-
tion.

Exercise VI.1

Show (or argue2) that in Cartesian coordi-
nates (where gij = δij), the components of
the inverse metric gij are given by gij = δij ,
where δij = 1 for i = j and δij = 0 for i 6= j.

Exercise VI.2

Show that the inner products between basis
vectors ei form the components of the metric
gij ; in particular, show that gij = 〈ei, ej〉.
You can do this by writing out 〈u, v〉 as the
explicit sum (dropping Einstein summation
convention):

〈u, v〉 =

3∑
i=1

3∑
j=1

〈
ui ei, v

j ej
〉

Here, it is appropriate to think of ui and vi

as “scalars” in the sense that they are just
coefficients in front of the basis vectors ei. In
particular, show that:

3∑
i=1

3∑
j=1

〈
ui ei, v

j ej
〉

=

3∑
i=1

3∑
j=1

ui vj 〈ei, ej〉

⇒ 〈u, v〉 =

3∑
i=1

3∑
j=1

ui vj 〈ei, ej〉

by expanding the sums into nine terms and
using the property 〈αu, v〉 = α 〈u, v〉 (where
α is a scalar) on each of the nine terms. Fi-
nally, compare the result (specifically the for-
mula to the right of the arrow symbol “⇒”)
to equation (6.2).

1In the sense of properties 1. and 2. of footnote 1 on page 9.
2Hint: This might be easy once you recognize that (6.4) has the
same form of as a matrix multiplication formula.

Exercise VI.3

Consider a circle of radius R in Euclidean
space. Recall the formulas for the parameter-
ization of the circle xi(θ) from exercise V.3.
Using the metric gij = δij , show that the in-
tegral (6.11) yields the correct value for the
circumference of the circle.
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VII. DUAL VECTORS

In this section, I wish to introduce a new type of vector,
which I call a dual vector (also called a one-form1, or a
covariant vector). Simply put, a dual vector is a quantity
that “eats” a vector and “spits out” a scalar (or a real
number). Explicitly, a dual vector w(·) is an operator
that does the following:

w(v) = wi v
i (7.1)

where wi are the components of the dual vector (note the
lowered index!). In a similar manner, you can think of
vectors v as being “dual” to dual vectors; vectors can be
thought of as operators that “eat” dual vectors and “spit
out” scalars:2

v(w) = vi wi (7.2)

I will take the opportunity here to introduce some no-
tation. It is standard to write expressions like (7.1) and
(7.2) using the following “inner product” notation:

〈w, v〉 = 〈v, w〉 = wi v
i = vi wi (7.3)

This differs from the inner product in equation (6.2) in
that one of the arguments in 〈 , 〉 is a dual vector. There
is no ambiguity here; if both of the arguments are vec-
tors, 〈 , 〉 is given by equation (6.2), and if one of the
arguments is a vector and one is a dual vector, 〈 , 〉 is
given by equation (7.3). Later, I’ll give you an exercise
where you show that 〈 , 〉 as defined in (7.3) satisfies the
same linearity properties as the usual inner product. In
particular, for vectors v, p, dual vectors w, q, and scalars
α, β, we have the properties:

〈v + αp,w + β q〉 = 〈v, w + β q〉+ α 〈p, w + β q〉
= 〈v + αp,w〉+ β 〈v + αp, q〉
= 〈v, w〉+ β 〈v, q〉+ α 〈p, w〉+ αβ 〈p, q〉

(7.4)
The notion that vectors and dual vectors are “dual” to
each other (in the sense of equations (7.1), (7.2) and
(7.3)) is central to tensor calculus—we will return to this
in the next section. For now, I must say a few more
things about dual vectors.

A natural set of basis elements (or “basis dual vectors”)
for the dual vector are the coordinate differentials dxi, so

1Dual vectors are referred to as one-forms because they are an exam-
ple of a class of tensors called differential forms, which are beyond
the scope of these notes.

2I’m being a bit sloppy here, since the dual of a dual vector is techni-
cally a double dual, not a vector. However, the vector space formed
by double duals is isomorphic to the vector space that the vector
v lives in, so it possesses the same algebraic structure. This is why
we can get away with treating double duals as if they are vectors.

that a dual vector may be written as:3

w = wi dx
i (7.5)

This is in contrast to vectors, which have partial deriva-
tives ∂

∂xi as basis elements (or basis vectors). The sense

in which coordinate differentials dxi form a natural set of
basis elements comes from the differential of a function,
which is an example of a dual vector. The differential df
of a function f(xa) is defined as:

df :=
∂f

∂xi
dxi (7.6)

The components of the differential are just the compo-
nents of gradient of the function. To simplify things, I’ll
use the symbol Gi to represent the components of the
gradient:

Gi :=
∂f

∂xi
⇒ df := Gi dxi (7.7)

The index i in Gi is lowered because as stated earlier, the
index i in partial derivatives ∂

∂xi are treated as lowered
indices in Einstein summation convention. To see that Gi
do indeed form the components of a dual vector (in the
sense of equation(7.1)), apply the directional derivative
operator v as defined in (5.8) to the function f . Using
(7.7), I can write the following expression for v(f):

v(f) = vi
∂f

∂xi
= vi Gi (7.8)

Upon comparing the above with equation (7.1) and re-
calling that v(f) is a scalar, we see that the Gi can be
used to form the components of a dual vector G = df
that “eats” v and “spits out” a scalar.

The basis elements dxi are themselves dual vectors, in
the same way that basis vectors are themselves vectors,
be they partial derivatives ∂

∂xi or unit vectors êi. There

must also be a sense in which dxi “eats” vectors and spits
out scalars. Equation (7.3), combined with the expres-
sions v = vi ∂

∂xi and w = wi dx
i can be used to infer the

following formula for the basis elements:〈
dxj ,

∂

∂xi

〉
=

〈
∂

∂xi
, dxj

〉
= δji (7.9)

The formula above states that when dxj “eats” a basis
vector ∂

∂xi , it “spits out” 1 or 0 depending on whether i =

3Given equation (7.5), you might wonder if a dual vector w can al-
ways be written as a differential of some scalar function f . Equiv-
alently, you might ask whether there always exists a function f
such that wi = ∂f

∂xi
. It turns out that in general, you can’t; this is

only possible if wi satisfies the (Frobenius) integrability condition:
∂wi
∂xj

=
∂wj
∂xi

(as an exercise, show that the gradient components

Gi satisfy this property). This integrability condition is a special
case of the Frobenius theorem, the details of which can be found
in [3, 11, 16, 27].
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j. It also states1 that when the basis vector ∂
∂xj “eats”

dxi, it also “spits out” 1 or 0 depending on whether i = j.

When the Differential df Eats a Vector
To give you some intuition for dual vectors, imagine that at some

point p, the components of the vector vi form the coordinates for
some 3d Euclidean space, which I’ll call TpM (which is a fancy
name for the tangent space of a manifold—recall the remarks at
the end of section V). We can construct scalar functions φ(va) on
TpM, just like we can in ordinary Euclidean space. A dual vector
w is just a linear function φ(va) = wi v

i on the Euclidean space
TpM. It is sometimes helpful to visualize what’s going on: φ(va)
is a linear function, so surfaces defined by constant values for φ
are 2d planes in the 3d Euclidean space TpM. If you imagine the
vector v as an arrow in TpM (with the tail at the origin), the tip
of the vector lies on the 2d plane corresponding to the value of φ
at the tip (w(v) = φ(va)).2

If you would like a less abstract (but sloppier) example, recall
that the differential df is a dual vector, which eats a vector vi and
spits out a scalar:

df(v) = Gi vi (7.10)

In Cartesian coordinates on Euclidean space, displacement vectors
∆xi make sense. Now pretend for a moment that v is a small
displacement vector vi = ∆xi. If the magnitude of v is small
enough, then can then interpret df(v) as the change in value of
the function f between the tip and tail of the displacement vector
vi = ∆xi:

df(v) ≈ f(tip of v)− f(tail of v)

If you think about it, this isn’t terribly surprising, since this is
virtually the same statement as the definition of the differential
(7.6): df = Gi dxi, if you imagine that dxi is a small displacement
vector.

Exercise VII.1

Show that 〈v, w〉 = vi wi (equation (7.3) sat-
isfies the linearity properties (7.4).

Exercise VII.2

Convince yourself of (7.9). You can do this
by writing out 〈v, w〉 explicitly:

〈v, w〉 =

〈
vi

∂

∂xi
, wj dx

j

〉
=

〈
v1

∂

∂x1
+ v2

∂

∂x2
+ v3

∂

∂x3
,

w1 dx
1 + w2 dx

2 + w3 dx
3

〉
Then, use linearity properties (7.4) to fur-
ther expand the above into an expression con-
taining nine terms of the form α

〈
dxj , ∂

∂xi

〉
,

1In this context, you should think of ∂
∂xj

as an abstract basis vector,
rather than a partial derivative.

2If you tried to learn about differential forms from [18], this is es-
sentially what the whole “bongs of a bell” example is all about.
I recall being bewildered by the explanation in [18], but my good
friend Luis Suazo eventually clarified it for me.

where α is a coefficient of the form va wb. Fi-
nally, ask yourself what conditions

〈
dxj , ∂

∂xi

〉
must satisfy in order to obtain the desired re-
sult (7.3): 〈v, w〉 = vi wi = v1 w1 + v2 w2 +
v3 w3
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VIII. SOME BASIC INDEX GYMNASTICS

In section III, I repeatedly shouted the statement: IN-
DEX PLACEMENT IS IMPORTANT! If you have
had exposure to Cartesian tensors, you may wonder how
so many authors can get away with ignoring the issue of
index placement. This section will reveal the reason why
you can get away with this in Cartesian coordinates.

If you have a metric gij , you can convert vectors to
dual vectors. Explicitly, this may be done by performing
the following operation on the components vi:

vj = gij v
i (8.1)

The quantities vj form the components of a dual vector
ṽ, which may be written as:

ṽ(·) = 〈v, ·〉 (8.2)

where the argument (·) requires a vector. If we feed a vec-
tor u into the dual vector ṽ, we recover the inner product
(6.2) between vectors u and v:

ṽ(u) = 〈v, u〉 = gij v
i uj (8.3)

Note that the notation vj introduced in (8.1) provides a
slick way to write the inner product: 〈v, u〉 = vj u

j .
We see that the metric can turn vectors into dual vec-

tors. It would be nice to do the reverse; I’d like to take
a dual vector and turn it into a vector. To do this, recall
that we require the existence of an inverse metric gij , de-
fined as the solution to equation (6.4): gikgkj = δij . The

inverse metric gij can then be used to turn the compo-
nents of a dual vector wj into the components of a vector
wi:

wi = gij wj (8.4)

The process of using metrics and inverse metrics to
convert vectors to dual vectors and vice versa is called
the lowering and raising of indices. In Cartesian coor-
dinates, the metric is just the Kronecker delta gij = δij ,
as is the inverse metric gij = δij . As a result, the rais-
ing and lowering of indices will not change the value of
the components: in Cartesian coordinates, v1 will have
the same value as v1, v2 will have the same value as v2,
and so on. This is why one can get away with neglecting
index placement when working with Cartesian tensors.
In curvilinear coordinates, however, the metric no longer
has this simple form, and index placement becomes im-
portant.1

The raising and lowering of indices is part of a formal-
ism for manipulating indices called index gymnastics. I
won’t go through all of the techniques in the formalism

1A professor in one of my undergraduate classes once made a remark
to the following effect: You can spend the rest of your life working
in Cartesian coordinates, but it would be a very miserable life!

here, but you will encounter most of the rule in one way
or another in these notes.2 On the other hand, I would
like to introduce a few of them before moving on to the
next section.

An important technique is the contraction of indices,
which is a generalization of the trace operation for ma-
trices. Given an object with two indices or more, index
contraction is the process of relabeling (and the reposi-
tioning) of an index so that it has the same symbol as
another index. Einstein summation convention then im-
plies that there is a sum over the indices. For a matrix
M with components M i

j , the contraction of indices is
just the trace:

M i
i = M1

1 +M2
2 +M3

3 (8.5)

Now consider a quantity with three indices: Qijk (don’t
worry about visualizing it; just think about it as a col-
lection of 3× 3× 3 = 27 variables). If I wish to contract
the indices i and k, I can use the metric gia to lower the
index i to obtain a quantity Qa

jk:

Qa
jk = giaQ

ijk (8.6)

I then relabel the index a: explicitly, I replace the symbol
a with the symbol k to get Qk

jk. The result is Qj , which
are the components of a vector:

Qj = Qk
jk = gikQ

ijk (8.7)

Index contraction provides a way to reduce the number
of indices for a quantity. There is an operation, called the
tensor product , which can be use to construct quantities
with more indices. The tensor product is a straightfor-
ward operation: given the components of a vector vi and
a dual vector wi, multiply them to form the components
of a matrix3 Ki

j :

Ki
j := vi wj (8.8)

Tensor products can be performed on quantities with
more indices. For instance, you could multiply the quan-
tity Qijk with the matrix components M i

j to form the
components of a big 5-indexed quantity Bijklm:

Bijklm := QijkM l
m (8.9)

A very useful tool for index manipulation is the rela-
beling of dummy indices. Dummy indices refer to the
indices that I sum over, for instance the indices i and k
in the expression gikQ

ijk (8.7). They are called dummy
indices because I can change the symbols that are being

2If you want, see page 85 of [18] for a list of the techniques that
make up index gymnastics.

3A warning: In general, it is not always possible to write matrix
components as a product of vector components. One example is
the identity matrix/Kronecker delta δij ; there exist no vectors that

can generate δij by way of formula (8.8).
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summed over without affecting the meaning of the ex-
pression. For instance, the expressions wi v

i and wj v
j

have the same exact meaning:

wi v
i = wj v

j (8.10)

If the above isn’t clear, it may help to write the above
(8.10) as an explicit sum (we drop Einstein summation
convention here):

3∑
i=1

wi v
i =

3∑
j=1

wj v
j = w1 v

1 + w2 v
2 + w3 v

3 (8.11)

A more illustrative example is the expression gikQ
ijk in

(8.7). I can change the label i to a and k to s in the
expression gikQ

ijk to obtain gasQ
ajs; both gikQ

ijk and
gasQ

ajs have the same meaning:

gikQ
ijk = gasQ

ajs (8.12)

If you need more convincing, write both sides of (8.12) as
explicit sums and expand—you should see that in each
case, you get the same result (exercise VIII.4). The re-
labeling of dummy indices can be an extremely useful
tool when dealing with long expressions—it is particu-
larly useful for identifying quantities that are equivalent
to each other (see exercise VIII.5).

Another set of techniques is the symmetrization and
antisymmetrization of indices. A quantity Sij is said to
be symmetric in the indices i and j if it satisfies the
property Sij = Sji. Given some quantity Pij that is not
symmetric in i and j, I can symmetrize the indices i and
j by performing the following operation:

P(ij) :=
1

2
(Pij + Pji) (8.13)

where P(ij) is called the symmetric part of Pij . A quan-
tity Aij is said to be antisymmetric in the indices i and
j if it satisfies the property Aij = −Aji. If Pij that is
not antisymmetric in i and j, I can antisymmetrize the
indices i and j by performing the following operation:

P[ij] :=
1

2
(Pij − Pji) (8.14)

where P[ij] is called the antisymmetric part of Pij .

Exercise VIII.1

Let ui and vj be dual vector components ob-
tained from the respective vector components
ui and vj . Show that the inner product 〈u, v〉
can be written as: ui v

i. Also show that ui vi
is equivalent to ui v

i.

Exercise VIII.2

Take the trace of δij , assuming 3d Euclidean
space. Now do the same for 2d Euclidean
space (in 2d Euclidean space, the indices i
and j only take on two values: 1 and 2). Do
the same for 4d Euclidean space. You should
be able to deduce the result for the trace in n-
dimensional Euclidean space. Now contract
the indices of δij with those of δij (compute
δij δ

ij); how does your result compare with
the trace of δij?

Exercise VIII.3

Consider the quantity Zijkl. Contract the in-
dices k and l, and raise an index to obtain
a matrix Sij . Write down the expression for
Sij in terms of the original quantity Zijkl and
the inverse metric gij . Contract the indices
of Sij , and write down the result in terms of
Zijkl and gij .

Exercise VIII.4

Write gikQ
ijk and gasQ

ajs as explicit sums.
Now expand the result (you should have nine
terms), and in doing so, show that equation
(8.12) is valid: gikQ

ijk = gasQ
ajs.

Exercise VIII.5

Relabel dummy indices to show that the fol-
lowing three quantities (which are all scalars)
are equivalent to gjlQ

ijkM l
i vk:

gkiQ
jklM i

j vl

Qkil vlM
j
k gij

vdM
b
c gabQ

cad

It is quite possible to do this by inspection,
but if you wish to show this explicitly, you
can do this by writing out the expression each
time you relabel a pair of indices, proceeding
until you have the expression gjlQ

ijkM l
i vk.

Exercise VIII.6

Let Aij be an antisymmetric quantity, so that
Aij = −Aji, and Sij be a symmetric quantity,
so that Sij = Sji. Show that if you raise the
indices of both quantities to obtain Aij and
Sij , they satisfy the same properties: Aij =
−Aji and Sij = Sji. Use this result to show
that Aij Sij = 0 and Aij S

ij = 0.



13

Exercise VIII.7

Show that if you symmetrize an antisymmet-
ric quantity Aij (Aij = −Aji), you get zero:
A(ij) = 0. Likewise, show that if you antisym-
metrize a symmetric quantity Sij (Sij = Sji),
you also get zero: S[ij] = 0. Finally, show
that if you have a quantity Pij that is neither
symmetric or antisymmetric (Pij 6= Pji and
Pij 6= −Pji), then you can decompose it into
its antisymmetric parts; in other words, show
that Pij = P(ij) + P[ij].

IX. COORDINATE INVARIANCE AND
TENSORS

In this section, I will finally reveal to you the precise
definition of a tensor, and show how it follows from the
principle that the value of a scalar function at a point
is unaffected by coordinate transformations. This is be-
cause coordinates are just labels or “names” that we give
to points in space.1 Now I must make an important dis-
tinction here: the principle I mentioned is only valid if
I think of scalar functions as functions of points, not
coordinates. From this section on, I will always define
scalar functions so that scalar functions are func-
tions of points, not coordinates. It follows that a
coordinate transformation can change how a scalar func-
tion depends on coordinates, but a coordinate transfor-
mation does NOT change how a scalar function depends
on points.2

A vector is a geometric quantity. In kindergarten,3 we
are taught that vectors consist of a magnitude and direc-
tion. How we represent the magnitude and the direction
of the vector depends on the coordinates. Again, coordi-
nates are just labels or “names” that we give to points in
space, so they should not alter the geometric properties
of a vector (its magnitude, for instance); geometry does
not care about the way we choose to “name” points in
space.

Intuitively, this means that coordinate transformations
cannot change the meaning of an inner product or a di-
rectional derivative. More precisely, both inner prod-
ucts and directional derivatives acting on a function yield
scalars, and the value of a scalar at a point should not de-
pend on the “name” (coordinates) we give to that point.
In other words, if I evaluate the following scalar quan-
tities at some point p, the numerical values should be
unaffected by coordinate transformations:

〈u, v〉 = gij u
i vj (9.1)

v(f) = v · ∇f (9.2)

On the other hand, the values for the vector compo-
nents ui, vi and the values for the gradient components
Gi = ∂f

∂xi do change under coordinate transformations.
To proceed, I need to know the transformation law for
vectors; in particular, I want to know how the compo-
nents vi of the vectors change under a coordinate trans-
formation.

Before I derive the transformation law for vectors, let
me first describe the coordinate transformation I wish to

1See chapter 1 of [18] to see how points in space can have a physical
meaning independent of coordinate labels.

2For this reason, all formulas in this section should be thought of
as being evaluated at the same point, irrespective of the coordinate
values for that point.

3This is a reference to Steven Weinberg, who says this when recalling
an elementary concept in his lectures.
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perform. Consider a coordinate transformation yα(xa),
where yα are my new coordinates, and xi are my old
coordinates. Lowercase Greek1 letters α, β, γ, ... will be
used for indices corresponding to new coordinates yα,
and lowercase Latin indices a, b, c, ...i, j, k, ... will be used
for indices corresponding to the old coordinates xi. I as-
sume that the functions yα(xa) are invertible, so that I
can obtain from it the functions xi(yα) (and vice-versa).
I can take derivatives of the functions yα(xa) and xi(yα),
to obtain the transformation matrices—the quantities
∂xj

∂yβ
and ∂yβ

∂xj form the components of the transforma-

tion matrices. The chain rule tells me that the deriva-
tives/transformation matrices ∂xj

∂yβ
and ∂yβ

∂xj are inverses

of each other in the following way:

∂xi

∂yα
∂yα

∂xj
=
∂xi

∂xj
= δij

∂yα

∂xi
∂xi

∂yβ
=
∂yα

∂yβ
= δαβ

(9.3)

The last equality comes from the assumption that the
coordinates are independent of each other (cf. (5.5)).

The chain rule also tells us how the components of the
gradient transforms:

∂f

∂yβ
=
∂xj

∂yβ
∂f

∂xj
(9.4)

As discussed in section VII, the components of the gradi-
ent Gi = ∂f

∂xi are the components of a dual vector, which
suggests the following transformation law for the compo-
nents of dual vectors:

wβ =
∂xj

∂yβ
wj (9.5)

If v is a vector and w is a dual vector, then the value
of w(v) = wi v

i, being a scalar, cannot be affected by a
coordinate transformation. For the value of w(v) to re-
main unchanged under a coordinate transformation, the
transformation law for vi must be opposite2 to that of
wi:

vα =
∂yα

∂xi
vi (9.6)

1If you plan to study relativity, I must alert you to the fact that
this notation is nonstandard (usually, primes are put on indices).
In relativity, Greek indices are typically reserved for coordinates
on spacetime, and Latin indices either used to denote spatial in-
dices, spacetime indices in the orthonormal basis (see for instance
Appendix J in [5]), or as “abstract” indices, which are used to
keep track of tensor arguments (the latter is called abstract index
notation, the details of which are discussed in [31]).

2The transformation is opposite in that that it uses the transforma-

tion matrix ∂yα

∂xi
instead of ∂xj

∂yβ
; recall that from equation (9.3),

∂yα

∂xi
is the inverse of ∂xj

∂yβ
and vice versa.

Under a coordinate transformation, I can then write the
following expression for w(v):

w(v) = wα v
α =

∂xj

∂yα
wj

∂yα

∂xi
vi =

∂xj

∂yα
∂yα

∂xi
wj v

i

= δji wj v
i = wi v

i

⇒ wα v
α = wi v

i

(9.7)

This computation (9.7) demonstrates that the transfor-
mation laws (9.5) and (9.6), combined with (9.3), guar-
antee that w(v) is unchanged under coordinate transfor-
mations. In short, I have shown that:

If vi transforms in a manner that is
“opposite” to the transformation of wi
under a change of coordinates, then
the transformations in w(v) = wi v

i can-
cel out, ensuring that the value of the
scalar w(v) remains unchanged under
coordinate transformations.

Inner products are invariant under coordinate trans-
formations. This demand establishes the transformation
law for the metric tensor. If you examine the expres-
sion (9.1) for the inner product 〈u, v〉 = gij u

i vj , you
may realize that the indices of the metric tensor must ac-
quire transformation matrices that cancel out the trans-
formation matrices that the vector components ui and
vi acquire under a coordinate transformation. The met-
ric tensor therefore satisfies the following transformation
law:

gαβ =
∂xi

∂yα
∂xj

∂yβ
gij (9.8)

Since the inner product can also be written as 〈u, v〉 =
gij ui vj (see exercise VIII.1), the inverse metric can be
similarly shown to satisfy the following transformation
law:

gαβ =
∂yα

∂xi
∂yβ

∂xj
gij (9.9)

Now recall the characterization of the metric at the
end of section VI as a (linear3) “machine” that “eats”
two vectors and “spits out” a scalar. One might imagine
a more general construction, which “eats” any number of
vectors and dual vectors, and “spits out” a scalar. This
construction is what we call a tensor , which is defined by
the statements:

A tensor is a linear map that “eats”
vectors and/or dual vectors and “spits
out” a scalar.

3In the sense of properties 1. and 2. of footnote 1 on page 9.
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By linear map,1 I mean that a tensor must be a linear
function2 of the things it “eats” and also that a tensor
vanishes when it “eats zero”, meaning that if you feed
a tensor a zero vector vi = 0 or a dual vector with all
vanishing components wi = 0, it automatically returns
zero.3 These conditions imply that a tensor that eats one
vector v and one dual vector w must have the following
form:

T (w, v) = T ij wi v
j (9.10)

Note that the above formula is linear4 in both wi and
vi, and vanishes if either wi = 0 or vi = 0 (as per the
“eats zero” property). For T (w, v) to be a scalar, the
components T ij must transform in the following way:

Tαβ =
∂yα

∂xi
∂xj

∂yβ
T ij (9.11)

At this point, you may notice a pattern in equations (9.8),
(9.9) and (9.11). In all cases, raised indices transform
just like vector indices, and lowered indices transform like
dual vector indices. This leads to the following properties
of tensor components:

Raised indices of tensor components
transform like vector indices

Lowered indices of tensor components
transform like dual vector indices

These properties are often used as defining properties of
tensors; in much of the literature, tensors are defined by
components which transform according to the two prop-
erties listed above.

Tensors can in general “eat” an arbitrary number of
vectors and dual vectors. The number of vectors and
dual vectors a tensor “eats” is called the rank of the
tensor. The two indexed tensor T ij defined in (9.10) is
called a rank 2 tensor (to be more precise, we say that
it is a rank (1, 1) tensor, since it eats one vector and one
dual vector). An example of a rank 5 tensor (or rank
(3,2) tensor), which eats the vectors v, u, q and the dual
vectors w, p, is the following:

B(w, p, v, u, q) = Bijklm wi pj v
k ul qm (9.12)

Note that the above expression is linear in the individual
components wi, pj , v

k, ul, and qm, and vanishes if any

1A more formal definition for the term “linear map” is given in
exercise IX.7.

2By this I mean that if a tensor “eats” a vector, it is a linear func-
tion of the vector components if everything else it “eats” is held
fixed. Another way to put it is that a tensor is linear in each of its
arguments.

3The “eats zero” property is another way of saying that the tensor
is a homogeneous function (of degree 1).

4T (w, v) is linear in the sense that it is linear in each of its arguments.

one of the vectors or dual vectors is zero (the “eats zero”
property).

The metric gij and its inverse gij are examples of ten-
sors; they are both linear maps, and respectively “eat”
vectors and dual vectors, and spit out scalars. Vectors
and dual vectors are also themselves examples of tensors
(they are both rank-1 tensors); a vector is a linear map
that “eats” a single dual vector and spits out a scalar,
and a dual vector is a linear map that “eats” a single
vector and spits out a scalar:

v(w) = vi wi

w(v) = wi v
i

(9.13)

I’ve given you the definition for a tensor. Now, I’ll
deliver the punchline for these notes:

Tensors are useful because tensor equa-
tions look the same in all coordinate
systems.

As an example, consider the following tensor equation:

Gij = κT ij (9.14)

where Gij and T ij are (rank-2) tensors, and κ is some
constant. Under a coordinate transformation, Gij and
T ij transform as:

Tαβ =
∂yα

∂xi
∂xj

∂yβ
T ij

Gαβ =
∂yα

∂xi
∂xj

∂yβ
Gij

(9.15)

Equation (9.14) transforms as:

∂yα

∂xi
∂xj

∂yβ
Gij = κ

∂yα

∂xi
∂xj

∂yβ
T ij ⇒ Gαβ = κTαβ (9.16)

We see that in the new coordinates, equation (9.16) has
the same form as it did in the old coordinates (9.14)!

Exercise IX.1

Use the transformation laws (9.4) and (9.6)
to show that the directional derivative v(f) =

V i ∂f∂xi is invariant under coordinate transfor-
mations.

Exercise IX.2

Write out the transformation law for the
components Sijklm of the tensor S defined in
(9.12).
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Exercise IX.3

Show that the Kronecker delta (3.9) with one
raised index and one lowered index, δij , re-
tains its identity in all coordinate systems.
In particular, show that1 if I define the ma-
trix Dα

β as the coordinate transformation of

the Kronecker delta: Dα
β = ∂yα

∂xi
∂xj

∂yβ
δij , then

Dα
β = δαβ . Note that this is not in general

true for the lowered index Kronecker delta δij
or the raised index Kronecker delta δij .

Exercise IX.4

Show that if Bijklm form the components of a
rank-5 tensor, then performing a contraction
on any pair of indices yields a rank-3 tensor.
In particular, convince yourself that Bij ilm
is a rank-3 tensor, Bijkkm = gklBijklm is
a rank-3 tensor, and so on. To show this
formally, first perform a coordinate trans-
formation on Bijklm, and then perform one
contraction on the indices of the transformed
components. The result should be the trans-
formation law for a rank-3 tensor.

Exercise IX.5

The tensor product for tensors is simply the
multiplication of tensor components to form
a tensor of higher rank (recall the discussion
of the tensor product in section VIII). Show
that if Qijk and Pij form the components of
a tensor, then the tensor product Qijk Plm
transforms as the components of a tensor.

Exercise IX.6

Show that if the tensor components Sij are
symmetric in i and j, meaning that Sij = Sji,
then the transformed tensor components are
also symmetric: Sαβ = Sβα. Also show that
if the tensor components Aij are antisymmet-
ric in i and j, meaning that Aij = −Aji, then
the transformed tensor components are also
antisymmetric: Aαβ = −Aβα

1Hint: Recall the chain rule (9.3).

Exercise IX.7

In this exercise, I give a more formal defi-
nition for a linear map. A linear map R is
defined by the following properties in each of
its arguments:

Additivity: R(y+z) = R(y)+R(z)

Homogeneity2 of degree 1: R(α y) = αR(y)

where y, z represent vectors or dual vectors,
and α is a scalar. Show that vectors v(·) and
dual vectors w(·) satisfy this property.

For an arbitrary number of arguments, a lin-
ear map R satisfies the following:

R(αu+ β v, ..., σ w + τ p, ...)

= αR(u, ..., σ w + τ p, ...) + β R(v, ..., σ w + τ p, ...)

= σ R(αu+ β v, ..., w, ...) + τ R(αu+ β v, ..., p, ...)

where u, v are vectors, w, p are dual vectors,
and α, β, σ, τ are scalars. Show that the
tensor T in (9.10) and the tensor B in (9.12)
both satisfy the above formulas.

2I add the phrase “degree 1” because in general Homogeneity refers
to the property f(αy) = αk f(y) for some integer k (which is an
exponent, not an index). In this case, we say f(y) is Homogeneous
of degree k.
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X. TRANSFORMATIONS OF THE METRIC
AND THE UNIT VECTOR BASIS

The metric is a tensor; you can find the expression
for the components gij in a different set of coordinates
using the tensor transformation law (9.8). In Cartesian
coordinates on Euclidean space, the components of the
metric are just the lowered index Kronecker delta δij .
In curvilinear coordinates, the components of the metric
gαβ are:

gαβ =
∂xi

∂yα
∂xj

∂yβ
δij (10.1)

Let’s transform the metric to spherical coordinates1

(r, θ, φ). In particular, I choose y1 = r, y2 = θ, and
y3 = φ. I write the original Cartesian coordinates xi as
functions of the spherical coordinates r, θ, and φ (or yα):

x1 = r cos φ sin θ

x2 = r sin φ sin θ

x3 = r cos θ

(10.2)

Using the formulas above (exercise X.2), you can show
that the components of the metric tensor take the follow-
ing form:

gαβ =

 g11 g12 g13
g21 g22 g23
g31 g32 g33

 =

 1 0 0
0 r2 0
0 0 r2 (sin θ)2

 (10.3)

The above formula (10.3) for the metric components gαβ
is useful in two respects. First, it tells you how to mea-
sure distances along curves in spherical coordinates, via
the line element (cf. equations (6.9) and (6.10)):

ds2 = gαβ dy
α dyβ = dr2+r2 dθ2+r2 (sin θ)2 dφ2 (10.4)

where the superscripts after the second equality are ex-
ponents, not indices. Second, the metric components gαβ
in (10.3) tells you how to take the dot product, given
the components of vectors uα and vα in spherical coor-
dinates:

u · v = gαβ u
α vβ (10.5)

However, there is a catch. If you have prior exposure to
vectors in spherical coordinates, the vector components
uα and vα in spherical coordinates may not be the same
as those you are familiar with. This is because:

1I use the physicist’s convention, where φ is the azimuthal angle that
runs from 0 to 2π. Incidentally, I find it odd that so many of my
physics colleagues still use the angle θ for polar coordinates in 2
dimensions (though I admit, I still do this on occasion); even more
oddly, I’ve seen many of them switch to using φ when working in
cylindrical coordinates!

In general, coordinate basis vectors ∂
∂xi

are not unit vectors, and unit vectors
are not in general coordinate basis vec-
tors!

Recall that a unit vector is a vector of unit norm, mean-
ing that a unit vector û satisfies the condition that û ·û =
1. Also recall that in section VI, the components of the
metric gij are actually inner products (in this case, dot
products) between the basis vectors ei—in particular, re-
call equation (6.7) gij = 〈ei, ej〉—and also equation (6.8),
which I rewrite here:

gij =

〈
∂

∂xi
,
∂

∂xj

〉
(10.6)

In order for ∂
∂yα to be unit vectors, the diagonal elements

of the metric, g11, g22, and g33 must all be equal to 1.
This is clearly not the case for the metric in spherical
coordinate (10.3); upon comparing (10.6) with (10.3), I
find that: 〈

∂

∂r
,
∂

∂r

〉
= g11 = 1〈

∂

∂θ
,
∂

∂θ

〉
= g22 = r2〈

∂

∂φ
,
∂

∂φ

〉
= g33 = r2 (sin θ)2

(10.7)

with all other inner products between the coordinate ba-
sis vectors vanishing. Only the basis element ∂

∂r is a unit
vector.

Note that if the metric is diagonal, meaning that gij =
〈ei, ej〉 = 0 if i 6= j, then the basis elements are orthog-

onal. If the basis vectors ∂
∂yα are orthogonal, then the

norms (10.7) can be used to obtain expressions for the
corresponding unit vectors in a straightforward manner;
in spherical coordinates, simply divide by the square root
of the norm to get the unit vectors:

r̂ =
1
√
g11

∂

∂y1
=

∂

∂r

θ̂ =
1
√
g22

∂

∂y2
=

1

r

∂

∂θ

φ̂ =
1
√
g33

∂

∂y3
=

1

r sin θ

∂

∂φ

(10.8)

The above formulas allow you to convert vectors from the
basis of partial derivatives (called the coordinate basis)
and the basis of unit vectors in spherical coordinates.

Exercise X.1
For simplicity, let’s work in two dimensions
for this problem. Consider the coordinate
functions relating Cartesian coordinates xi to
the polar coordinates y1 = r and y2 = φ:

x1 = r cos φ

x2 = r sin φ
(10.9)
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Use the tensor transformation law (10.1) to
obtain the components gαβ for the metric in
polar coordinates. Can you infer the compo-
nents of the inverse metric gαβ?

Exercise X.2

Obtain the components gαβ for the metric
in spherical coordinates from the coordinate
functions (10.3) and the transformation law
(10.1) for the metric. Use your result to infer
the components of the inverse metric gαβ .

Exercise X.3

In Cartesian coordinates, the simplest nonva-
nishing vector field you can write down is the
constant vector field:

v1 = 1

v2 = 0

v3 = 0

Lower the indices to get the components of
the dual vector vi. Obtain the components vα
for the dual vector field in spherical coordi-
nates, and use the components of the inverse
metric gαβ (see exercise X.2) to obtain the
components for the vector field vα in spher-
ical coordinates. Finally, obtain the compo-
nents for the vector in the unit-vector basis:
r̂, θ̂, φ̂.

Exercise X.4

Use the coordinate functions (10.9) in exer-
cise X.1 to infer the coordinate functions for
cylindrical coordinates. Use the transforma-
tion law (10.1) to obtain an expression for
the metric in cylindrical coordinates. Work
out the norm for each basis vector ∂

∂yα , and

obtain expressions for the corresponding unit
vectors.

XI. DERIVATIVES OF TENSORS

Ultimately, the goal here is to construct a formalism
for writing down Partial Differential Equations (PDEs)
in a manner that is transparent1 for doing calculations,
but also coordinate-invariant. Often, we wish to express
PDEs in coordinates adapted to a particular problem, es-
pecially when symmetry is involved. For instance, when
using a PDE to model a spherically symmetric system, it
is far more appropriate to express the PDE in spherical
coordinates than cylindrical coordinates.

By definition, PDEs contain partial derivatives. Unfor-
tunately, it turns out that partial derivatives of tensors
do not transform like tensors. The purpose of this sec-
tion is to develop a formalism for the derivatives that
preserves the transformation properties of tensors.

The partial derivative of a scalar function f(xa), the

gradient Gi = ∂f
∂xi , transforms as a tensor—a dual vec-

tor in fact. Actually, if you recall the logic in section
IX, it is the other way around—these notes derive the
transformation properties of the dual vector wi (and all
the transformation properties of tensors) from the trans-
formation of the gradient components Gi. On the other
hand, the partial derivative of the components vi of a
vector field, do not transform as a tensor. Consider the
following quantity:

Aij :=
∂vi

∂xj
(11.1)

and its corresponding expression in the coordinates yα:

Aαβ :=
∂vα

∂yβ
(11.2)

If Aij and Aαβ are components of a tensor, they would
be related to each other by a tensor transformation law
(9.11), which I rewrite here for T ij and Tαβ :

Tαβ =
∂yα

∂xi
∂xj

∂yβ
T ij (11.3)

Unfortunately, Aij and Aαβ do not satisfy a tensor trans-
formation law of the form (11.3). To see this, I insert the

formula vα = ∂yα

∂xi v
i into equation (11.2) for Aαβ :

Aαβ =
∂

∂yβ

(
∂yα

∂xi
vi
)

=
∂xj

∂yβ
∂

∂xj

(
∂yα

∂xi
vi
)

(11.4)

1This is the disadvantage of the standard Gibbs-Heaviside formalism
for vector analysis that you may be accustomed to (see the article
[6] for a historical discussion of the Gibbs-Heaviside formalism).
Abstract expressions such as ∇ · v and ∇ × v are in some sense
coordinate-invariant, but they give little indication of the methods
for computing them in an arbitrary set of curvilinear coordinates.
You need to first specify the meaning of ∇ · v and ∇ × v in some
“natural” coordinate system (Cartesian coordinates), then derive
expressions for ∇ · v and ∇ × v in another coordinate system by
way of coordinate transformations.
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where I have applied the chain rule in the second equality.
Upon applying the product rule and recognizing a factor
of Aij , I obtain the result:

Aαβ =
∂xj

∂yβ
∂yα

∂xi
Aij +

∂xj

∂yβ
∂2yα

∂xj∂xi
vi (11.5)

If I cover up the underlined term with my hand, the equa-
tion above (11.5) looks like the tensor transformation law.
However, the presence of the underlined term means that
the quantities Aij and Aαβ do not form the components
of a tensor. If we can somehow get rid of the underlined
term in (11.5) without placing constraints1 on the func-
tions yα(xa), then we could recover the transformation
law for a tensor.

One way to do this is to construct a new derivative
operator that reduces to the usual partial derivative in
Cartesian coordinates. The simplest modification to the

partial derivative ∂vi

∂xj (11.2) is to add a correction term.
Since I wish to cancel out the underlined term in (11.5),
and since the underlined term contains a factor of vi, the
correction term should contain a factor of vi. These con-
siderations lead me to define a new derivative operator
∇j , called the covariant derivative, which acts on vi in
the following way:

∇jvi =
∂vi

∂xj
+ Γijk v

k (11.6)

where Γijk are coefficients, which are sometimes called
connection coefficients. The trick here is that the coeffi-
cients Γijk do not transform as tensors. Instead, I demand

that the coefficients Γijk satisfy the following transforma-
tion law:

Γαβγ =

(
∂yα

∂xi
∂xj

∂yβ
∂xk

∂yγ

)
Γijk −

(
∂xj

∂yβ
∂2yα

∂xj∂xi

)
∂xi

∂yγ

(11.7)
Note that the bracketed quantity in the second term ap-
pears in the underlined term in (11.5). If we demand that
∇i reduces to the ordinary partial derivative in Carte-
sian coordinates, then in Cartesian coordinates, we set
Γijk = 0. It follows that the second term in (11.7) can be
used to compute the connection coefficients Γαβγ in any
other coordinate system.

If the coefficients Γijk transform according to the above

transformation law (11.7), then it is not difficult to show
(see exercise XI.1) that the quantity ∇jvi (11.6) trans-
forms as a tensor:

∇βvα =
∂yα

∂xi
∂xj

∂yβ
∇jvi (11.8)

1If the second derivative of yα(xa) vanishes, then the underlined
term in (11.5) vanishes, and we recover the tensor transformation
law. However, if xi are Cartesian coordinates, this is also the con-
dition that the coordinate lines are straight; the only admissible
coordinate transformations correspond to rigid rotations and trans-
lations.

where ∇βvα is given by:

∇βvα =
∂vα

∂yβ
+ Γαβγ v

γ (11.9)

Equation (11.8) states that the covariant derivative oper-
ator ∇i yields a rank-2 tensor when acting on a vector—
success!

The next thing to do is to construct a covariant deriva-
tive for tensors of higher rank. Note that for a rank-2
tensor Gij with raised indices each index will pick up a

factor of transformation matrix ∂yα

∂xi under a coordinate

transformation. Each factor of ∂y
α

∂xi will generate an extra
term which needs to be canceled out (see exercise XI.2).
The covariant derivative for Gij takes the form:

∇kGij =
∂Gij

∂xk
+ ΓikmG

mj + ΓjkmG
im (11.10)

For a rank-3 tensor Qijl, I pick up yet another term:

∇kQijl =
∂Qijl

∂xk
+ ΓikmQ

mjl + ΓjkmQ
iml + ΓlkmQ

ijm

(11.11)
I can continue to higher rank, but I think you see the
pattern; when taking the covariant derivative, each index
requires a term containing a factor of Γijk and the original
tensor components.

I’ll take the opportunity to quickly introduce the fol-
lowing notation for the gradient of a scalar function:

∇kf =
∂f

∂xk
, (11.12)

which follows from running the pattern of equations
(11.6), (11.10) and (11.11) in reverse—a scalar function
f has zero indices, so no extra correction term is needed.
In case you don’t recognize the pattern, I’ll summarize
the covariant derivative for f , vi, Gij and Qijl:

∇kf =
∂f

∂xk

∇kvi =
∂vi

∂xk
+ Γikm v

m

∇kGij =
∂Gij

∂xk
+ ΓikmG

mj + ΓjkmG
im

∇kQijl =
∂Qijl

∂xk
+ ΓikmQ

mjl + ΓjkmQ
iml + ΓlkmQ

ijm

(11.13)
As an exercise (see exercise XI.3, try to construct the
covariant derivative for a rank-4 tensor.

I now wish to construct covariant derivatives for lower
indexed objects. I’ll begin by constructing the derivative
for a dual vector, which I expect to have the form:

∇kwi =
∂wi
∂xk

+ Cjki wj (11.14)

Recall that the quantity vi wi is a scalar. From (11.12),
the covariant derivative ∇k acting on a scalar is just the
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partial derivative, so:

∇k(vi wi) =
∂(vi wi)

∂xk
= wi

∂vi

∂xk
+ vi

∂wi
∂xk

(11.15)

where the product rule has been used in the second
equality. Now a good definition for a derivative operator
should respect the product (Leibniz) rule, so I demand
that the covariant derivative for dual vectors be consis-
tent with the following property:

∇k
(
vi wi

)
= wi∇kvi + vi∇kwi (11.16)

I now have two equations, (11.15) and (11.16), for the
same quantity ∇k

(
vi wi

)
. If I expand (11.16) and sub-

tract (11.15) from (11.16), I obtain the following result:

∇k
(
vi wi

)
−∇k

(
vi wi

)
= wi Γikj v

j + vi Cjki wj

= wi Γikj v
j + vj Cikj wi = 0

(11.17)
Where I have performed a relabeling of dummy indices in
the last term (recall the discussion in section VIII on the
relabeling of dummy indices). If I demand that equation
(11.17) holds for all vi and wi, the coefficients Cikj must

satisfy Cikj = −Γikj , so that the covariant derivative for
dual vectors is given by:

∇kwi =
∂wi
∂xk
− Γjki wj (11.18)

Given the pattern (11.13) and the covariant derivative
(11.18) for dual vectors, I may infer that for a rank-2
tensor Kij with lowered indices, the covariant derivative
is:

∇kKij =
∂Kij

∂xk
− ΓakiKaj − Γakj Kia (11.19)

I may also infer that for a rank-2 tensor T ij with mixed
indices, the covariant derivative is:

∇kT ij =
∂T ij
∂xk

+ Γika T
a
j − Γakj T

i
a (11.20)

Given (11.19), (11.20), and the “tower” of equations in
(11.13), you should be able to infer the covariant deriva-
tive of a tensor of arbitrary rank. If you want a more
careful justification of (11.19) and (11.20), see exercise
XI.4.

At this point, I can state the punchline and end this
section. However, I wish to present a useful formula for
Γijk in terms of the metric tensor:

Γijk =
1

2
gia
(
∂gja
∂xk

+
∂gak
∂xj

− ∂gjk
∂xa

)
(11.21)

In this form, the coefficients Γijk are called Christoffel

symbols. You can derive the formula (11.21) for Christof-

fel symbols from the following two conditions1 on the
covariant derivative ∇i:

1. The Torsion Free Condition: For a scalar function
f , ∇i satisfies:

∇i∇jf = ∇j∇if ⇒ Γkij = Γkji (11.22)

2. Metric Compatibility:

∇kgij = 0 (11.23)

Since equations (11.22) and (11.23) are constructed from
covariant derivatives, they transform as tensors, and have
the same form in all coordinates. It is not too hard to
verify that both (11.22) and (11.23) are true in Cartesian
coordinates, provided that we demand that Γijk = 0 in

Cartesian coordinates. Thus, instead of computing Γijk
via the transformation law (11.7) in curvilinear coordi-
nates, we may first work out an expression for the metric
in curvilinear coordinates, then use (11.21) to obtain an
expression for Γijk.

Now that I have shown you how to take the covariant
derivative ∇i for a tensor, I can deliver the punchline for
this section:

The covariant derivative of a tensor
transforms as a tensor. This is useful
because it allows us to write derivatives
in a form that looks the same in all co-
ordinate systems.

The formulas for the covariant derivatives of a tensor are
given in (11.19), (11.20), and (11.13). Given a metric
gij , the coefficients Γijk can be obtained from equation

(11.21). Alternately, one may demand that Γijk = 0 and

use the transformation law (11.7) to obtain an expression
for Γijk in an arbitrary curvilinear coordinate system.

Since covariant derivatives become partial derivatives
in Cartesian coordinates, all you need to do to convert
a PDE to a tensor equation is to write down the PDE
in Cartesian coordinates, and replace partial derivatives
with covariant derivatives:2

∂

∂xk
→ ∇k (11.24)

1Some terminology: Sometimes, a covariant derivative ∇i is called a
connection, and Γijk are called connection coefficients. The specific

covariant derivative defined by the properties (11.22) and (11.23) is
called the Levi-Civita connection (this is not to be confused with
the Levi-Civita symbol and Levi-Civita pseudotensor, which are
entirely different quantities that I will introduce later on).

2This is sometimes called the “comma-to-semicolon rule.” This term
refers to a commonly used shorthand notation for partial deriva-
tives and covariant derivatives, in which partial derivatives of ten-
sors are denoted by placing the derivative index after a comma:

T ij, k =
∂T ij
∂xk

, and covariant derivatives are similarly expressed,

this time with a semicolon: T ij; k = ∇kT ij . The comma-to-
semicolon rule refers to the replacement of partial derivatives (com-
mas) with covariant derivatives (semicolons). For further discus-
sion of this rule and the subtleties of applying it in non-Euclidean
geometries, refer to Chapter 4 of [31] and Box 16.1 of [18].
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Curvature

In these notes, I have avoided the discussion of non-Euclidean

geometries, lest I be accused of doing General Relativity (the hor-

ror!). However, I suspect that you may nonetheless be curious

about the applications of this formalism to non-Euclidean geome-

tries. In particular, this formalism may be used to describe curved

2d surfaces, but it does so in a way that can be generalized to n-

dimensional manifolds. Specifically, the intrinsic geometric proper-

ties of a curved 2d surface is determined by the metric, from which

one can define distances (using the line element) and angles (us-

ing the inner product). A metric for a curved 2d surface differs

from that of a flat metric in that there exists no coordinate system

such that the metric reduces to the Kronecker delta δij everywhere

on the surface. The metric is important for studying the intrinsic

geometry of curved 2d surfaces and their higher-dimensional gen-

eralizations, but the covariant derivative (called the connection) is

even more important, because you can use it to construct a tensor

that corresponds to the curvature of the surface (or a manifold),

which is a measure of the degree to which a surface/manifold fails

to satisfy the geometric properties of Euclidean space. The ten-

sor that measures the intrinsic curvature of a surface/manifold is

called the Riemann curvature tensor Rijkl, which is formed from

the connection coefficients Γijk and their partial derivatives—the

definition and formula for Rijkl can be found in any textbook on

General Relativity (see for instance [5], [31], and [18]).

Exercise XI.1
Show that if the coefficients Γijk satisfy the

transformation law (11.7), the covariant deriva-
tives ∇jvi and ∇βvα (as defined in (11.6) and
(11.9)) satisfy (11.8):

∇βvα =
∂yα

∂xi
∂xj

∂yβ
∇jvi

Exercise XI.2
Given the tensor transformation law for Gij :

Gαβ =
∂yα

∂xi
∂yβ

∂xj
Gij , (11.25)

show that the partial derivatives ∂Gij

∂xk
and

∂Gαβ

∂yγ satisfies the following expression:

∂Gαβ

∂yγ
=
∂xk

∂yγ
∂yα

∂xi
∂yβ

∂xj
∂Gij

∂xk

+
∂yβ

∂xj
∂xk

∂yγ
∂2yα

∂xk∂xi
Gij

+
∂yα

∂xi
∂xk

∂yγ
∂2yβ

∂xk∂xj
Gij .

(11.26)

Use (11.26) to show that the covariant deriva-
tive∇kGij as defined in (11.10) transforms as
a tensor, or that:

∇γGαβ =
∂xk

∂yγ
∂yα

∂xi
∂yβ

∂xj
∇kGij , (11.27)

with ∇γGαβ being given by the expression:

∇γGαβ = ∂Gαβ

∂yγ + Γαγσ G
σβ + Γβγσ G

ασ.

Exercise XI.3

Following the pattern in (11.13), write out
the expression for the covariant derivative of
the rank-4 tensor Rijkl.

Exercise XI.4

In this exercise, I will walk you through a
more careful justification of equations (11.19)
and (11.20). Begin by assuming that the co-
variant derivatives of T ij and Kij have the
form:

∇kKij =
∂Kij

∂xk
+AakiKaj +Aakj Kia

∇kT ij =
∂T ij
∂xk

+ P ika T
a
j +Qakj T

i
a

(11.28)

where Aaki, P
i
ka, and Qakj are coefficients to

be determined. Now consider the scalars
ui vj Kij and wi v

j T ij , where ui, vi are ar-
bitrary vectors, and wi is an arbitrary dual
vector. Note that:

∇k
(
ui vj Kij

)
=
∂
(
ui vj Kij

)
∂xk

∇k
(
wi v

j T ij
)

=
∂
(
wi v

j T ij
)

∂xk

(11.29)

Expand the right hand side, using the prod-
uct rule. Demand that the covariant product
rule holds:

∇k
(
ui vj Kij

)
= vj Kij ∇kui + uiKij ∇kvj

+ ui vj ∇kKij

∇k
(
wi v

j T ij
)

= vj T ij ∇kwi + wi T
i
j ∇kvj

+ wi v
j ∇kT ij

(11.30)
and expand out the covariant derivatives of
the vectors ui, vi and dual vector wi using
equations (11.6) and (11.18). Subtract equa-
tions (11.29) from (11.30), and demand that
the result holds for all choices of ui, vi, wi,
T ij and Kij . From this demand, you may in-
fer that Aaki = −Γaki, P

i
ka = Γika, and Qakj =

−Γakj .
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Exercise XI.5

In order for the operator∇i to be properly re-
garded as a derivative operator for the vector
components ui and vi, it should satisfy the
following two properties for the vector com-
ponents ui and vi:

1. Additivity:

∇i
(
uj + vj

)
= ∇iuj +∇ivj (11.31)

2. Product Rule (Leibniz Rule):

∇i
(
uj vk

)
= vk∇iuj+uj ∇ivk (11.32)

Show that the covariant derivative satisfies
these properties (for the product rule, apply
the definition (11.10) to the product Gjk =
uj vk). Write down the corresponding prop-
erties for a pair of dual vectors wi and pi,
and show that∇i satisfies those properties for
dual vectors. Finally, check that the Leibniz
rule holds for a vector vi and a dual vector
wi:

∇i
(
vj wk

)
= wk∇ivj + vj ∇iwk (11.33)

Exercise XI.6

Derive (11.21) from equations (11.22) and
(11.23). To do this, use (11.23) to obtain the
expression:

∇igkj +∇jgik −∇kgij = 0 (11.34)

Use (11.22) to simplify the result.

Exercise XI.7

Use equation (11.21) and with the metric you
obtained in exercise X.4 to derive the coef-
ficients Γijk in cylindrical coordinates. You

should only have two unique1 nonzero coeffi-
cients.

Exercise XI.8

Use equation (11.21) and with equation (10.3)
to derive the coefficients Γijk in spherical co-
ordinates.

1There are a total of three, but two of the coefficients are equivalent
due to the symmetry in the lowered indices of Γijk.

Exercise XI.9

Extend the properties (11.31) and (11.32)
to tensors of arbitrary rank, and show that
the covariant derivative operator ∇i satis-
fies these properties. For instance, given the
tensors T ij , K

i
j and Qi

jk, Pi
jk, show that

the covariant derivative satisfies the following
properties:

1. Additivity:

∇i
(
T jk +Kj

k

)
= ∇iT jk +∇iKj

k

(11.35)

∇i
(
Qj

kl + Pj
kl
)

= ∇iQjkl +∇iPjkl
(11.36)

2. Product Rule (Leibniz Rule):

∇i
(
T jkQl

mn
)

=Ql
mn∇iT jk

+ T jk∇iQlmn
(11.37)

and use this result to convince yourself that
∇i satisfies similar properties for tensors of
arbitrary rank.

Exercise XI.10

Show or argue2 that:

∇kgij = 0. (11.38)

Note that the above expression differs from
(11.23) in that it involves the covariant deriva-
tive of the inverse metric instead of the met-
ric.

2Hint: Note that ∇kgij is a tensor. What is ∇kgij in Cartesian
coordinates?
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XII. DIVERGENCES, LAPLACIANS AND
MORE

PDEs are often expressed in terms of divergences and
Laplacians. In this short section, I describe their con-
struction in terms of covariant derivatives ∇i. In the
standard Gibbs-Heaviside notation for vector analysis,
the divergence of a vector field v is written as the follow-
ing:

~∇ · ~v (12.1)

If I take equation (12.1) literally, ~∇ is a vector operator,
with “components” ∇i given by:

∇i := gik∇k (12.2)

Now if I interpret the dot product as an inner product, I
may write:

~∇ · ~v = gij ∇ivj = gij g
ik∇kvj = δkj ∇kvj (12.3)

which leads to the following expression for the Divergence
of a vector field:

~∇ · ~v = ∇i vi =
∂vi

∂xi
+ Γiik v

k (12.4)

Suppose that you wish to take the divergence of a ma-
trix field; in other words you wish to write something to

the effect: ~∇ ·M for some 3 × 3 matrix field M. An
expression of the form ~∇ ·M requires a good deal of ex-
planation, but if the matrix M is a rank-2 tensor with
components M i

j , it has a straightforward tensor expres-
sion:

~∇ ·M = ∇iM i
j =

∂M i
j

∂xi
+ ΓiikM

k
j − ΓkijM

i
k (12.5)

This example illustrates the power of the tensor formal-
ism; expressions that are difficult to interpret in the stan-
dard Gibbs-Heaviside notation become straightforward
when written in tensor notation. Conversely, it is not too
difficult to imagine operations that are straightforward
in tensor notation, but become extremely cumbersome
to express in Gibbs-Heaviside notation—consider, for in-
stance, the following operator, which I call the “matrix
Laplacian”:

M i
j∇i∇j (12.6)

Another example is the following quantity:

(~v · ~∇)~u (12.7)

which can be thought of as the “directional derivative”
of a vector ~u. This quantity caused me great confusion

when I first saw it, because it was written as ~v·~∇~u; in that
form, I didn’t know whether to apply the dot product to
~∇ or ~u, so in my mind, there were two meanings for ~v·~∇~u:

gkj v
k∇iuj (12.8)

gkj v
k∇jui (12.9)

When brackets are placed around ~v · ~∇, as in (12.7), then
it becomes clear that one is referring to second expression
(12.9). I don’t know of any straightforward way to ex-
press the quantity (12.8) in Gibbs-Heaviside notation—
this is another limitation of that formalism.

Now I turn to the Laplacian acting on a scalar func-
tion φ(xa) is given by the following expression in Gibbs-
Heaviside notation (the “2” on the left hand side is an
exponent, not an index):

∇2φ = ~∇ · ~∇φ (12.10)

Using (12.2), I may write the Laplacian operator as:

∇2 := ~∇ · ~∇ = gij ∇i∇j (12.11)

If the covariant derivative ∇i satisfies the condition of
metric compatibility (11.23,11.38) (it should, if we de-
mand that Γijk = 0 in Cartesian coordinates), then one
can use the product rule to obtain the result for the op-
erator:

∇2 = gij ∇i∇j (12.12)

For a scalar function φ, (12.10) becomes:

∇2φ = gij ∇i∇jφ = gij
(

∂2φ

∂xi∂xj
− Γkij

∂φ

∂xj

)
(12.13)

The Laplacian operator (12.12) constructed from co-
variant derivatives ∇i may be used to obtain the action
of the Laplacian on vectors:

∇2vk = gij ∇i∇jvk = gij ∇i
(
∂vk

∂xj
+ Γkja v

a

)
= gij

[
∂2vk

∂xi∂xj
+
∂Γkja
∂xi

va + Γkja
∂va

∂xi

+ Γkib

(
∂vb

∂xj
+ Γbja v

a

)
− Γbij

(
∂vk

∂xb
+ Γkba v

a

)]
(12.14)

Since we know how covariant derivatives act on tensors
of arbitrary rank, you could in principle construct the
explicit formula for the Laplacian for a tensor of arbitrary
rank.

Exercise XII.1

Obtain the components of (~v · ~∇)~u (12.7) (in
tensor form, vk∇kui (12.9)) in cylindrical co-
ordinates (recall exercise X.4 and XI.7).
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Exercise XII.2

The Schrödinger equation for a single parti-
cle of mass m in nonrelativistic Quantum Me-
chanics has the form:

i ~
∂Ψ

∂t
= − ~2

2m
∇2Ψ + V (xa) Ψ

where t is time, Ψ and V (xa) are scalar func-
tions, ~ the reduced Planck constant, and
i =

√
−1. Rewrite the Schrödinger equa-

tion in tensor form, then write down the ex-
plicit expression for the Schrödinger equation
in spherical coordinates (recall exercises X.2
and XI.8). We’re not doing relativity, so
don’t transform ∂/∂t; time t is an absolute
parameter here.

Exercise XII.3

The nonrelativistic Euler equation for an in-
viscid fluid takes the form:

ρ
∂~v

∂t
+ ρ (~v · ~∇)~v = −~∇P +

1

ρ
~f

where t is time, ~v is the velocity of a fluid, ρ is
the fluid density, P is the fluid pressure, and
~f is an external force density (force per unit
mass). Rewrite the Euler equation in tensor
form, then write down the explicit expression
for the Euler equation in cylindrical coordi-
nates (again recall exercises X.4 and XI.7).
Assume that the coordinate transformations
do not depend on t, so that ∂~v/∂t transforms
just like the vector ~v.

Exercise XII.4

Write out the components for the Laplacian
of a vector ∇2~v in spherical coordinates.

Exercise XII.5

Write out an explicit expression for the “ma-
trix Laplacian” of (12.6) acting on a scalar
function:

M i
j∇i∇jφ (12.15)

in terms of φ, gij , g
ij and Γijk.

Exercise XII.6

Given the expression (12.11), work out an ex-
plicit expression for the Laplacian of a rank-2
tensor field:

∇2T ij (12.16)

in terms of T ij , gij , g
ij and Γijk.

XIII. THE LEVI-CIVITA TENSOR: CROSS
PRODUCTS, CURLS, AND VOLUME

INTEGRALS

Many PDEs contain expressions that involve cross
products and curls. In the standard Gibbs-Heaviside no-
tation, the cross product and curl respectively take the
form:

~A× ~B (13.1)

~∇× ~A (13.2)

for vectors ~A and ~B. In both cases, the result is a vector.
To express (13.1) and (13.2) in component form, I need

to define the following quantity1 ε ijk, called the permu-

tation symbol :2

ε ijk = ε ijk =


1 if {i, j, k} is an even permutation of {1, 2, 3}

−1 if {i, j, k} is an odd permutation of {1, 2, 3}

0 if any two indices are equal

(13.3)
Explicitly, this means that the nonzero components of
ε ijk are:

ε 123 = ε 312 = ε 231 = 1

ε 132 = ε 321 = ε 213 = −1
(13.4)

I must point out something important:

The permutation symbol ε ijk does
NOT form the components of a ten-
sor!

The reason for this is simple: the values of ε ijk do not
depend on the coordinate system. Alternately, ε ijk has
the same set of values in all coordinate systems. More
pointedly, ε αβγ has values defined by the same equation
(13.4) as ε ijk. I’ll say more about this in a bit.

In Cartesian coordinates, the components of ~A× ~B and
~∇× ~A, which I respectively write as [ ~A× ~B]i and [~∇× ~A]i,
are given by the following formulas:

[ ~A× ~B]i = gia ε ajk A
j Bk = δia ε ajk A

j Bk (13.5)

[~∇× ~A]i = gia ε ajk∇jAk = δia δjb ε ajk
∂Ak

∂xb
(13.6)

Where I have set gij = δij and ∇i = ∂
∂xi . To be clear:

Equations (13.5) and (13.6) are NOT tensor equa-
tions! Equations (13.5) and (13.6) are ONLY valid in

1Note the underline!
2The permutation symbol ε ijk is also called the Levi-Civita symbol,
not to be confused with the Levi-Civita connection (see footnote 1
on page 24), which is an entirely different concept.
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Cartesian coordinates. This is because, as stated earlier
in bold, ε ijk is not a tensor.

To see that ε ijk is not a tensor, I’ll feed it the compo-

nents of three vectors, ~A, ~B and ~C, to obtain the follow-
ing expression:

~A · ( ~B × ~C) = ε ijk A
iBj Ck (13.7)

Under a coordinate transformation, I obtain the left hand

side of the following expression (assuming ∂xi

∂yα 6= δiα):

ε ijk
∂xi

∂yα
∂xj

∂yβ
∂xk

∂yγ
AαBβ Cγ 6= ε αβγ A

αBβ Cγ (13.8)

The left hand side is not in general equal to the right

hand side because (again, assuming ∂xi

∂yα 6= δiα):

ε ijk
∂xi

∂yα
∂xj

∂yβ
∂xk

∂yγ
6= ε αβγ (13.9)

If one insists that both sides (13.9) be equal for an arbi-
trary coordinate transformation, then one obtains a con-
tradiction: either ε ijk or ε αβγ must fail to satisfy (13.4),
but both ε ijk and ε αβγ are defined by equation (13.4).
This demonstrates that the permutation symbol ε ijk can-
not form the components of a tensor.

I can’t proceed without introducing an expression for
the determinant of a matrix. The permutation symbol
ε ijk can be used to define the determinant of a matrix

M with components M i
j :

det (M) = ε ijkM
i
1M

j
2M

k
3 = 1

3! ε ijk ε
abcM i

aM
j
bM

k
c

(13.10)
where 3! = 3 × 2 × 1 = 6 is the factorial of 3. From the
determinant formula above, one can deduce the following
identity:

ε ijk det(M) = ε abcM
a
iM

b
jM

c
k (13.11)

The justification for this identity is a bit involved, so I
will put it in a footnote.1 The determinant can also be

1To justify (13.11), I need to establish some properties of a com-
pletely antisymmetric rank-3 quantity Aijk, which is defined to be
a quantity that satisfies the following property:

Aijk = Ajki = Akij = −Ajik = −Aikj = −Akji (13.12)

In 3-dimensions, the antisymmetry property constrains the value of
Aijk so that it effectively has one independent component. To see
this, first note that if any two indices of Aijk have the same value,
then Aijk = 0. The only nonvanishing components are those for
which the indices of Aijk are even or odd permutations of 123, of
which there are 3! = 6. Equation (13.12) amounts to six constraints
on the nonvanishing components of Aijk, which implies that the six
nonvanishing components must all be equal to the same variable
α or its negative −α. One can infer that in 3 dimensions, any
antisymmetric tensor is proportional to ε ijk, since ε ijk = ±1:

Aijk = α ε ijk (13.13)

defined for rank-2 tensors with raised or lowered indices.
Particularly useful is the determinant of the metric tensor
(which I assume to be positive2):

|g| := det(gmn) = ε ijk gi1 gj2 gk3 =
1

3!
ε ijk ε abc gia gjb gkc

(13.14)
Since I require that there exists an inverse metric gij , the
determinant is nonvanishing. What makes |g| useful is
the fact that under a coordinate transformation, it yields
the square of the Jacobian determinant:

|g′| = J2 |g| (13.15)

where the Jacobian determinant J is defined as:

J := det

(
∂xi

∂yα

)
(13.16)

I assume that the coordinate transformations do not in-
volve reflections (such as x → −x), so that J > 0. The
transformation property (13.15) may be inferred from the
following property of determinants for the 3× 3 matrices
M and N:

det (MN) = det (M) det (N) (13.17)

As you might imagine, the transformation property
(13.15) will make |g| particularly useful for construct-
ing volume integrals—I will briefly discuss this later on.

Now, I go back and compare the left hand side of equa-

tion (13.9) with the identity (13.11). Since ∂xi

∂yα form the

components of the transformation matrix, I write:

ε ijk
∂xi

∂yα
∂xj

∂yβ
∂xk

∂yγ
= det

(
∂xi

∂yα

)
ε αβγ

⇒ ε ijk
∂xi

∂yα
∂xj

∂yβ
∂xk

∂yγ
= ε αβγ J

(13.18)

Equation (13.18) can in some sense be regarded as a
transformation law for the permutation symbol ε ijk. In

fact, I can divide both sides of (13.18) by det
(
∂xi

∂yα

)
to

obtain the following result:

ε αβγ =
1

J

∂xi

∂yα
∂xj

∂yβ
∂xk

∂yγ
ε ijk (13.19)

Now note that both sides of equation (13.11) is an antisymmet-
ric rank-3 quantity (it has three indices that aren’t summed over).
The indices {i, j, k} are antisymmetric by virtue of ε ijk. This ob-
servation (that the indices {i, j, k} are antisymmetric) tells us two
important facts: equation (13.11) is only nonvanishing if the in-
dices ijk are an even or odd permutation of 123, and the right hand
side of (13.11), being antisymmetric, is proportional to ε ijk. That
the constant of proportionality is the determinant of the matrices
α = det(M) comes from contracting the right hand side of (13.11)
with ε ijk, applying the identity ε ijk ε ijk = 3!, and recognizing the
expression for the determinant in (13.10).

2If you plan to study Special and General Relativity, be warned:
While the metric tensor in Euclidean space has positive determi-
nant, the metric tensor for spacetime has negative determinant.
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In this form, the permutation symbol ε ijk almost trans-
forms like a tensor; only the factor of 1/J prevents (13.19)
from being a tensor transformation law.

Fortunately, there is a simple fix. Recalling that the
determinant of the metric |g| := det(gmn) acquires a fac-
tor of J2 under a coordinate transformation (13.15), I
can construct from ε ijk a quantity that transforms like

a tensor by multiplying ε ijk by
√
|g|:

εijk =
√
|g| ε ijk (13.20)

The quantity εijk (no underline!) is called the Levi-Civita
tensor1, and it satisfies the following transformation law:

εαβγ =
∂xi

∂yα
∂xj

∂yβ
∂xk

∂yγ
εijk (13.21)

With the definition (13.20) for the Levi-Civita tensor εijk,
I can now write the cross product (13.5) and curl (13.6)
as tensor equations:

[ ~A× ~B]i = gia ε ajkA
j Bk =

√
|g| gia ε ajkAj Bk (13.22)

[~∇× ~A]i = gia gjb ε ajk∇bAk =
√
|g| gia gjb ε ajk ∇bAk

(13.23)
I conclude this section with a brief discussion of the vol-

ume integral. It is well-known that the volume element
dx1 dx2 dx3 acquires a factor of the Jacobian determinant
J under a coordinate transformation.2 From equation
(13.15), it follows that the square root of |g| := det(gmn)
acquires a factor of the Jacobian determinant:√

|g′| = J
√
|g| (13.24)

In Cartesian coordinates on Euclidean space, the met-
ric gij is just the Kronecker delta δij , which has a de-
terminant of 1. In curvilinear coordinates on Euclidean
space, the determinant of the metric is just the square
of the Jacobian determinant. This motivates the follow-
ing definition for the volume element d3V in curvilinear
coordinates:

d3V :=
√
|g| dx1 dx2 dx3 (13.25)

from which we obtain the following expression for the
volume integral of a scalar function f(xa) in curvilinear
coordinates:∫

f(xa) d3V =

∫
f(xa)

√
|g| dx1 dx2 dx3. (13.26)

1Strictly speaking, it is not exactly a tensor since it acquires an
extra negative sign under coordinate transformations involving re-
flections (parity transformations), which I ignore in this section.
For this reason, the Levi-Civita tensor is sometimes called a pseu-
dotensor .

2The full proof of this statement is beyond the scope of these notes;
one can find a proof in [1] (see theorem 15.11), or one may provide
a justification through the formalism of differential forms, which is
also beyond the scope of these notes.

Exercise XIII.1

If you have taken a course in Electromag-
netism, you should be familiar with Maxwell’s
equations. Write down the vector form for
Maxwell’s equations in the standard vec-
tor notation—if you have a background in
physics, do it from memory! If not, look
them up.3 Rewrite all of Maxwell’s equa-

tions in tensor form. Assume that ∂ ~E/∂t

and ∂ ~B/∂t transform as vectors.

Exercise XIII.2

Show (or convince yourself) of the following
identities for the permutation symbol εijk (as-
suming 3 dimensions):

εijk ε
ijk = 3! = 6 (13.27)

εjab ε
iab = 2 δij (13.28)

εkij ε
kab = δai δ

b
j − δbi δaj (13.29)

Exercise XIII.3

Show that the second equality in (13.10)
holds. In particular, show that (expand the
sums):

ε ijkM
i
1M

j
2M

k
3 = 1

3! ε ijk ε
abcM i

aM
j
bM

k
c

(13.30)

Exercise XIII.4

Consider an antisymmetric rank-2 tensor Aij .
Show that in 3-dimensions, the antisymmetry
property Aij = −Aji reduces the number of
independent components to 3.

Exercise XIII.5

Prove the following expressions by writing
them out in tensor form:4

~A·( ~B× ~C) = ~B·(~C× ~A) = ~C ·( ~A× ~B) (13.31)

~A× ( ~B× ~C) = ~B ( ~A · ~C)− ~C ( ~A · ~B) (13.32)

~∇× (~∇× ~A) = ~∇ (~∇ · ~A)− ~∇ · ~∇ ~A (13.33)

3You may find an example of Maxwell’s equations in [12, 13].
4Hint: The identities (13.27), (13.28), and (13.29) in exercise XIII.2
may be useful here.
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Exercise XIII.6

Recall that partial derivatives commute: ∂
∂xi∂xj =

∂
∂xj∂xi . Show that the following expressions

hold in all coordinate systems:1

~∇ · (~∇× ~A) = 0 (13.34)

~∇× (~∇f) = 0 (13.35)

Exercise XIII.7

Write out the expression for the curl ~∇×~v in
cylindrical and spherical coordinates.

Exercise XIII.8

In two dimensions, the permutation symbol
εij only has two indices: ε12 = −ε21 = 1.
Write down the two-dimensional version of
the integral (13.26). Compute the Jacobian
determinant J (13.16) for the polar coordi-
nate functions (10.9) in exercise X.1, and also
the metric determinant |g|; in doing so, show

that J =
√
|g|, and write down the explicit

expression for the volume element in polar
coordinates.

Exercise XIII.9

Work out the expression for the Jacobian de-
terminant J (13.16) for the spherical coordi-
nate functions (10.2), then do the same for√
|g| (recall exercise X.2). Check that J =√
|g|, and write down the volume element.

You should get the familiar result:

d3V = r2 sin θ dr dθ dφ (13.36)

1Hint: Write the equations in tensor form, then show that they hold
in Cartesian coordinates. Think about the tensor transformation
law (compare your result with equation (9.16))

XIV. SURFACE INTEGRALS, THE
DIVERGENCE THEOREM AND STOKES’

THEOREM

In this last section, I will review the formalism for sur-
face integrals, and briefly describe how the tensor for-
malism may be extended to the divergence theorem and
Stokes’ theorem.

There are two ways of defining a 2d surface in Eu-
clidean space. The first is to define a 2d surface, which I
call σ as the level surfaces of some scalar function Φ(xa).
In particular, points on the surface must have coordinate
values such that the following constraint is satisfied:

Φ(xa) = C (14.1)

where C is some constant. This definition for the surface
is useful, because the gradient of the function Φ(xa) can
be used to obtain the components for the unit normal
vector to the surface σ (see exercise XIV.1):

ni =
1√

gab∇aΦ∇bΦ
gik∇kΦ (14.2)

where the right hand side of equation (14.2) is evaluated
at points that lie on the surface σ.

The other definition is parametric—in particular, I pa-
rameterize the surface σ with two parameters, z1 and z2,
which you can imagine to be coordinates for the surface
σ. In fact, I will simply write z1 and z2 as zA, with the
convention that capital Latin indices correspond to co-
ordinate indices for the surface σ. The coordinates for
points on the surface σ are defined by the coordinate
functions xi(zA), which are explicitly given by:

x1 = x1(z1, z2)

x2 = x2(z1, z2)

x3 = x3(z1, z2)

(14.3)

with x1, x2, and x3 being coordinates in 3-dimensional
Euclidean space. The parametric definition is useful be-
cause it can be used to define the components for a metric
tensor2 γAB on the surface σ:

γAB :=
∂xi

∂zA
∂xj

∂zB
gij (14.4)

The metric tensor γAB is called the induced metric It
is not too difficult to see that γAB is equivalent to the
metric tensor gij for vectors tangent to the surface σ;
given the components T A for a tangent vector on σ in

2The surface σ may in general be curved; in general, there exists
no coordinate system on σ such that γAB = δAB everywhere on
the surface σ. Incidentally, if the surface σ is curved, then it is an
example of a non-Euclidean space.
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the basis ∂
∂zA

, I can construct the components Ti for a

tangent vector to σ in the basis ∂
∂xi :

Ti =
∂xi

∂zA
T A (14.5)

It follows from (14.5) that for vector components T A and
SA in the basis ∂

∂zA
, the induced metric yields the same

result as the vector components T i and Si in the basis
∂
∂xi :

γAB T A SB = gij T i Sj (14.6)

Since the induced metric γAB is equivalent to gij for tan-
gent vectors, then the following line element:

ds2 = γAB dz
A dzB (14.7)

is equivalent to the line element (6.9) constructed from
gij for distances along curves on the surface σ.

I now describe a strategy for establishing the rela-
tionship between the constraint definition (14.1) and the
parametric definition (14.3). One way to bridge the gap
is to use an induced parameterization, in which two of
the Euclidean coordinates (x1, x2, x3) are used parame-
ters, so that the parameterization includes the following
coordinate functions:

x1 = z1

x2 = z2
(14.8)

The last coordinate function x3(z1, z2) is then obtained
by solving the constraint equation Φ(xa) = C for x3.
Of course, the induced parameterization (14.8) assumes
that σ is not a surface of constant x1 or x2. Also, the
induced parameterization may only work on a portion of
the surface, as the surface σ may contain more than one
point that has the same values for x1 and x2.

Given a metric tensor γAB for the surface σ and equa-
tion (13.26) for the volume integral, it is natural to con-
struct the surface integral in the following way:1∫

σ

f(zA) d2a =

∫
σ

f(zA)
√
|γ| dz1 dz2 (14.9)

where the 2d metric determinant |γ| is given by the fol-
lowing formula:

|γ| := det(γAB) = γ11 γ22 − γ12 γ21 (14.10)

As argued earlier, the metric γAB provides a measure
of distance (in the form of the line element (14.7) on the
surface σ that is equivalent to the measure of distance (in
the form of the line element (6.9) provided by the metric

1The 2d surface element
√
|γ| dz1 dz2 can be derived from the 3d

surface element (13.25) by way of differential forms, but differential
forms are beyond the scope of these notes.

gij . From this, one can infer that the area element in
(14.9), being constructed from the determinant of γAB
is consistent with the way we usually measure lengths in
Euclidean space.

Given the components of the unit normal vector ni

(14.2) and the area element in (14.9) I can define the
directed surface element :

d2Σi := ni
√
|γ| dz1 dz2 (14.11)

For some region U in Euclidean space with a 2d boundary
surface ∂U , the divergence theorem for a vector field vi

can then be written as:∫
U

∇ivi
√
|g| dx1 dx2 dx3 =

∫
∂U

vi d2Σi (14.12)

Now consider a 2d surface σ bounded by the closed 1-d
path ∂σ. The closed 1-d path ∂σ may be described by
a parameterized curve xi(s), where s is some parameter.
We may write the differential dxi for the 1-d path ∂σ as:

dxi =
dxi

ds
ds (14.13)

The classical2 Stokes’ theorem for a vector field vi can
then be written as:∫

σ

gia gjb ε ajk∇bvk d2Σi =

∫
∂σ

vi dx
i (14.14)

where ε ajk is the Levi-Civita tensor (13.20), and the line
integral on the right hand side is performed in the right-
handed direction with respect to the directed surface el-
ement Σi.

Exercise XIV.1

Convert the gradient of a function Φ(xa) to
a vector (with raised indices) Gi. Take the
inner product of the gradient vector Gi with
another vector T i, and simplify it to obtain a
familiar result. Do you recognize the result?
Use this result to argue that if the vector T i
is tangent to the level surfaces (the surfaces
of constant Φ(xa)) of the function Φ(xa), the
inner product gij Gi T j vanishes. Since the
inner product between the gradient vector Gi
and a tangent vector T vanishes, this demon-
strates that the gradient vector Gi is normal
to the level surfaces of Φ(xa).

2I say classical Stokes’ theorem to distinguish (14.14) from the
generalized Stokes’ theorem, which is expressed with differen-
tial forms. Further discussion of the generalized Stokes’ theorem
may be found in many textbooks on General Relativity such as
[5, 8, 9, 18, 21, 31, 32], and also in the books [2, 3, 11, 16, 19, 20, 27].
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Exercise XIV.2

Briefly explain why I need to divide by
√
gab∇aΦ∇bΦ

on the right hand side of the formula (14.2)
for the components of the unit normal vector
ni.

Exercise XIV.3

Rewrite equations (14.12) and the (classi-
cal) Stokes’ theorem (14.14) in the (Gibbs-
Heaviside) form used in elementary vector
calculus courses.1

Exercise XIV.4

Rewrite the integral version of Maxwell’s
equations in “tensor form”.

Exercise XIV.5

Consider the usual Cartesian coordinates x,
y, z on Euclidean space. The function Φ for
a sphere is given by:

Φ = x2 + y2 + z2 (14.15)

and the constraint is:

Φ = r2 ⇒ x2 + y2 + z2 = r2 (14.16)

for some constant r. Construct an induced
parameterization for the sphere. Specifically,
parameterize the sphere with the parameters
p and q, and write down the two coordinate
functions:

x(p, q) = p

y(p, q) = q
(14.17)

Solve equation (14.16) for z to obtain the
function z(x, y), and use (14.17) to obtain
the function z(p, q). Now take the following
derivatives:

∂x

∂p
,

∂x

∂q
,

∂y

∂p
,

∂y

∂q
,

∂z

∂p
,

∂z

∂q
(14.18)

Finally, use your result for (14.18) with
(14.4) to obtain the induced metric γAB for
the sphere.

1See for instance, equations 10.17 and 11.9 in [4] or equations II-30
and III-13 in [26].

Exercise XIV.6

Again, find the induced metric γAB for the
sphere, but this time, start in spherical co-
ordinates (as defined in (10.2)) on Euclidean
space. What is the constraint function Φ(r, θ, φ)?2

It is appropriate to parameterize the surface
using θ and φ. You should obtain the follow-
ing result for the metric components:

γθθ = 1

γφφ = r2 (sin θ)2
(14.19)

Now take the determinant of γAB to obtain
the surface element, then perform the follow-
ing integral over the entire sphere to obtain
the surface area:

A =

∫
σ

√
|γ| dθ dφ (14.20)

and check that your result is consistent with
the surface area of the sphere.

Exercise XIV.7

Given a matrix M dependent on some vari-
able s, the Jacobi formula for the derivative
of the determinant is the following:

∂(det(M))

∂s
= det(M) M̃j

i ∂M
i
j

∂s
. (14.21)

where M̃j
i form the components of the in-

verse matrix M−1. Use this to infer a similar
Jacobi determinant formula for the derivative
of
√
|g| with respect to some variable s. Use

the result to show the following:

∂
√
|g|

∂xj
=
√
|g| Γaja (14.22)

Use (14.23) to show that:√
|g| ∇ivi =

∂

∂xj

(√
|g| vi

)
(14.23)

2Hint: It’s really trivial.
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XV. FURTHER READING

As I mentioned in my introductory remarks, these
notes are meant to be self-contained, and I have done my
best to build the subject from first principles. Though I
have written these notes for a broad audience, these notes
may be unsatisfactory to some—they may not be ped-
agogical or rigorous enough to satisfy everyone. Those
familiar with early versions of these notes can attest to
the significant changes I have made—it turns out that
over time, even I can become dissatisfied with my notes!
I must also mention that these notes do not form a com-
plete discussion of tensor analysis; I have omitted many
important topics, such as differential forms (and the as-
sociated formalism), Lie differentiation, and of course,
Riemannian geometry.

If you wish to learn more about tensors and their ap-
plications (or if you find these notes lacking), I have
compiled a list of books, many of which I have cited
throughout these notes. This list is by no means com-
prehensive, and mainly reflects my background in Gen-
eral Relativity—I am certain that I have only sampled
a small fraction of the literature which discusses tensors
and their applications. The books contained in this list,
which form a (rather large) subset of the references on
the following page, are chosen because they either contain
a more complete discussion of the material contained in
these notes, contain an extensive discussion of the tensor
formalism, or discuss applications of the tensor formalism
in geometry and physics.

Books on Tensors

Synge, J. and Schild, A. (1949). Tensor Cal-
culus: by J.L. Synge and A. Schild. Univer-
sity Press

Jeevanjee, N. (2015). An Introduction to
Tensors and Group Theory for Physicists.
Springer

Lawden, D. (2012). An Introduction to Ten-
sor Calculus: Relativity and Cosmology. Dover

Lovelock, D. and Rund, H. (1989). Tensors,
Differential Forms, and Variational Princi-
ples. Dover

Bishop, R. and Goldberg, S. (1968). Tensor
Analysis on Manifolds. Dover

Books on Physics and Mathematics

Matzner, R. A. and Shepley, L. C. (1991).
Classical Mechanics. Prentice Hall

Schutz, B. (1980). Geometrical Methods of
Mathematical Physics. Cambridge University
Press

Baez, J. C. and Muniain, J. (1994). Gauge
Fields, Knots, and Gravity. World Scientific

Eisenhart, L. (1925). Riemannian Geometry.

Princeton University Press

Frankel, T. (2011). The Geometry of Physics:
An Introduction. Cambridge University Press

Nash, C. and Sen, S. (2011). Topology and
Geometry for Physicists. Dover

Nakahara, M. (2003). Geometry, Topology
and Physics, Second Edition. Taylor & Fran-
cis

Penrose, R. (2004). The Road to Reality: A
Complete Guide to the Laws of the Universe.
Random House

General Relativity Textbooks

Schutz, B. (1985). A First Course in General
Relativity. Cambridge University Press

Choquet-Bruhat, Y. (2015). Introduction to
General Relativity, Black Holes, and Cosmol-
ogy. Oxford University Press

Dray, T. (2014). Differential Forms and the
Geometry of General Relativity. Taylor &
Francis

Zee, A. (2013). Einstein Gravity in a Nut-
shell. Princeton University Press

Carroll, S. (2004). Spacetime and Geometry:
An Introduction to General Relativity. Addi-
son Wesley

Raychaudhuri, A., Banerji, S., and Banerjee,
A. (1992). General Relativity, Astrophysics,
and Cosmology. Springer

Padmanabhan, T. (2010). Gravitation: Foun-
dations and Frontiers. Cambridge University
Press

Weinberg, S. (1972). Gravitation and cosmol-
ogy: principles and applications of the general
theory of relativity. Wiley

Wald, R. (1984). General Relativity. Univer-
sity of Chicago Press

Poisson, E. (2004). A Relativist’s Toolkit:
The Mathematics of Black-Hole Mechanics.
Cambridge University Press

Ciufolini, I. and Wheeler, J. (1995). Gravita-
tion and Inertia. Princeton University Press

Misner, C. W., Thorne, K. S., and Wheeler,
J. A. (1973). Gravitation. W. H. Freeman
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Of a Vector, 23
Directional Derivative Operator, 6
Divergence, 23

Of a Matrix, 23
Divergence Theorem, 29
Dot Product, 7
Dual Vector, 4

Transformation Law, 14
Dummy Indices, 12

Relabeling of, 12

Eats Zero Property, 15
Eigenvector Formula, 3
Einstein Summation Convention, 4
Electromagnetism, 27
Euler Equation, 24

Formalism, 2

General Relativity, 6, 21, 26
Gibbs-Heaviside Formalism, 19
Gradient, 10

Homogeneous Function/Map, 17

Index Gymnastics, 11
Index Contraction, 12
Lowering Indices, 11
Raising Indices, 11

Index Placement, 3
(Is Important), 3
For Matrices, 3
Lowered Index, 3, 9, 15
Raised Index, 3, 6, 15

Induced Metric, 28
Induced Parameterization, 29, 30
Inner Product, 7, 9

As Metric, 7
Nondegeneracy, 7
Positive Definite Condition, 7
Properties, 7

Integrability Condition (Frobenius Theorem), 10
Inviscid Fluid, 24

Jacobi Formula, 30
Jacobian Determinant, 26

Kronecker Delta, 3, 4, 7
As Metric, 7, 11, 21, 27
As Tensor, 16

Laplacian, 23
Of a Tensor, 24
Of a Vector, 24
Operator, 24

Leibniz Rule, 20, 22, 23
Levi-Civita Connection, 21
Levi-Civita Symbol

2-Dimensional, 28
Transformation Law, 26

Levi-Civita Tensor, 27
Line Element, 8, 29
Linear Map, 15, 16
Linearity

Additivity, 17
Linearity (Properties), 7, 9

Manifold, 6
Matrix, 3, 26

Components, 3
Matrix Laplacian, 23
Maxwell’s Equations

Integral Form, 30
Vector Form, 27

Metric, 7
As Inner Product, 7
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Components, 8, 18
Determinant, 26
For a Surface, 28
In Cartesian Coordinates, 7
Induced Metric, 28
Inverse, 7
Line Element, 8
Properties, 7
Symmetry, 7
Transformation Law, 15
Transformation of Determinant, 26

Metric Compatibility, 21
Metric Determinant

2-dimensional, 29

Parameterization, 6, 8, 28, 29
Induced, 29, 30

Permutation Symbol, 25
2-Dimensional, 28

Polar Coordinates, 18
Product Rule, 20, 22, 23
Pseudotensor, 27

Rank, 15

Scalar Function, 14
Schrödinger Equation, 24
Sphere, 30
Spherical Coordinates, 17
Stokes’ Theorem, 29
Surface Integral, 29
Symmetric Part, 12
Symmetrization, 12

Tangent Vector, 6, 29
Tensor

Definition, 15
Tensor Equation, 16
Tensor Product, 12, 16
Tensor Transformation Law, 15
Torsion-Free Condition, 21
Trace, 12

Unit Vector, 5, 10, 18

Vector
Transformation Law, 14

Vector Fields, 6
Vector Identities, 27
Volume Element, 27

In Spherical Coordinates, 28
Volume Integral, 27
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